首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Coexisting feldspars from across 2,000 km2 of the granulite facies Oaxacan Complex, southern Mexico exhibit variable amounts of solid solution from nearly binary (Ab-An and Ab-Or) to substantially ternary (Ab-An-Or). Reintegrated analyses of 21 coarsely exsolved perthite (AF)-plagioclase (PL) pairs yield AF=Or30–63 Ab30–56An2–15 and PL=Or1–2Ab70–84An11–28. These data have been used to test existing two feldspar geothermometers for this extended composition range.For all compositions, temperature estimates show relatively little spread in value (660° to 795° C, 7 kbar) using the Haselton et al. (1983) calibration (HHHR). These temperatures are in fair agreement with estimates of 750±40° C for feldspar pairs with nearly binary compositions using the Stormer (1975) thermometer (STO). However, STO temperatures increase significantly (to 990° C) with increasing ternary solid solution in AF, suggesting that thermometers derived for binary systems are inaccurate for ternary compositions. Isotherms drawn from HHHR which take into account variable anorthite solution in alkali feldspar show that estimated temperature decreased by 50–100° C for each 5 mole percent anorthite in alkali feldspar.Experimentally determined solvus relations (Seck 1971) require feldspars with significant ternary solid solution to have crystallized or to have equilibrated at higher temperature than feldspars with more binary compositions. However, petrographic and field relations of ternary and binary feldspars in the Oaxacan Complex suggest they were all equilibrated at similar metamorphic pressures and temperatures and do not support a model where ternary feldspars have preserved higher premetamorphic temperatures. The composition of coexisting feldspars from other Precambrian granulite-facies terranes are also inconsistent with Seck's (1971) results. Hence, thermometers which fit Seck's solvus relations may not yield accurate temperatures in high grade metamorphic terranes. Parallel tie-lines for ternary and binary feldspars in the Oaxacan Complex and the consistency of inferred temperatures (HHHR) for many granulite terranes suggest that estimation of temperature using tie-line slopes rather than solvus width may yield more accurate results for these samples.Peak metamorphic conditions in the Oaxacan Complex are inferred to have been 730±50° C, 7±1 kbar. Pressure estimates from four garnet-plagioclase barometers show good agreement. Results of feldspar thermometry are consistent with diopside-forsterite equilibria in marbles which restrict T=720–765° C at P=7 kbar.  相似文献   

2.
Thermometry of regionally metamorphosed granulites of the Adirondack Highlands has been undertaken using feldspar and iron-titanium-oxide equilibria. Electron microprobe analyses of 20 coexisting oligoclase (An18–30) and microcline perthite (Or57–87) pairs from charnockites and granitic gneisses give KD[Na/(Na+Ca+K]plag/[Na/(Na+Ca+K)]or = 2–3 yielding temperatures of 650 ° to 750 ° C in comparison to Seck's (1971) experimental and Stormer's (1975) calculated temperatures for inferred pressures of 8 kilobars. Microprobe analyses of 10 coexisting titaniferous magnetite (ulvöspinelss 16–45) and ilmenite (hematitess 4.7–6.5) pairs from the Marcy massif anorthosite and related gabbros give temperatures of 620 ° to 800 ° C in comparison to Buddington and Lindsley's (1964) experimental data. Oxygen fugacities buffered by this assemblage range between 10–20 and 10–16 and always lie within 10+1 of the f buffered by fayalite-magnetite-quartz. Exsolved albite in alkali feldspar and ilmenite (oxidized ulvöspinel lamellae) must be reintegrated to infer metamorphic temperatures. Both thermometers give internally consistent, reproducible and geologically reasonable results. The inferred 750 ° and 700 ° C isotherms wrap around the anorthosite massif in roughly concentric circles. Maximum metamorphic temperatures (790 ± 50 ° C) occur between Saranac Lake and Tupper Lake, New York.Contribution No. 336 from the Mineralogical Laboratory, Department of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan, 48109. U.S.A.  相似文献   

3.
Two kimberlite pipes in Elliott County contain rare ultramafic xenoliths and abundant megacrysts of olivine (Fo85–93), garnet (0.21–9.07% Cr2O3), picroilmenite, phlogopite, Cr-poor clinopyroxene (0.56–0.88% Cr2O3), and Cr-poor orthopyroxene (<0.03–0.34% Cr2O3) in a matrix of olivine (Fo88–92), picroilmenite, Cr-spinel, magnetite, perovskite, pyrrhotite, calcite, and hydrous silicates. Rare clinopyroxene-ilmenite intergrowths also occur. Garnets show correlation of mg (0.79–0.86) and CaO (4.54–7.10%) with Cr2O3 content; the more Mg-rich garnets have more uvarovite in solution. Clinopyroxene megacrysts show a general decrease in Cr2O3 and increase in TiO2 (0.38–0.56%) with decreasing mg (0.87–0.91). Clinopyroxene megacrysts are more Cr-rich than clinopyroxene in clinopyroxene-ilmenite intergrowths (0.06–0.38% Cr2O3) and less Cr-rich than peridotite clinopyroxenes (1.39–1.46% Cr2O3). Orthopyroxene megacrysts and orthopyroxene inclusions in olivine megacrysts form two populations: high-Ca, high-Al (1.09–1.16% CaO and 1.16–1.18% Al2O3) and low-Ca, low-Al (0.35–0.46% CaO and 0.67–0.74% Al2O3). Three orthopyroxenes belonging to a low-Ca subgroup of the high-Ca, high-Al group were also identified (0.86–0.98% CaO and 0.95–1.01% Al2O3). The high-Ca, high-Al group (Group I) has lower mg (0.88–0.90) than low-Ca, low-Al group (Group II) with mg=0.92–0.93; low mg orthopyroxenes (Group Ia) have lower Cr2O3 and higher TiO2 than high mg orthopyroxenes (Group II). The orthopyroxene megacrysts have lower Cr2O3 than peridotite orthopyroxenes (0.46–0.57% Cr2O3). Diopside solvus temperatures indicate equilibration of clinopyroxene megacrysts at 1,165°–1,390° C and 1,295°–1,335° C for clinopyroxene in clinopyroxene-ilmenite intergrowths. P-T estimates for orthopyroxene megacrysts are bimodal: high-Ca, high-Al (Group I) orthopyroxenes equilibrated at 1,165°–1,255° C and 51–53 kb (± 5kb) and the low-Ca, low-Al (Group II) orthopyroxenes equilibrated at 970°–1,020°C and 46–56 kb (± 5kb). Garnet peridotites equilibrated at 1,240°–1,360° C and 47–49 kb. Spinel peridotites have discordant temperatures of 720°–835° C (using spinel-olivine Fe/Mg) and 865°–1,125° C (Al in orthopyroxene).Megacrysts probably precipitated from a fractionating liquid at >150 km depth. They are not disaggregated peridotite because: (1) of large crystal size (up to 1.5 cm), (2) compositions are distinctly different from peridotite phases, and (3) they display fractionation trends. The high mg, low T orthopyroxenes and the clustering of olivine rims near Fo89–90 reflect liquid changes to higher MgO contents due to (1) assimilation of wall-rock and/or (2) an increase in Fe3+/Fe2+ and subsequently MgO/FeO as a result of an increase in f o.  相似文献   

4.
The current formulations of the Fe–Ti oxide thermobarometer (titanomagnetite–ilmenitess) fail to reproduce experimental results, in particular at the high temperatures that are relevant for basaltic assemblages. With the aim of improving the experimental basis of the calibration in the Fe–Ti–O system, we have synthesised assemblages of titanomagnetite–ilmenitess (Tmt–Ilmss), ilmenitess–pseudobrookitess (Ilmss–Psbss) and single-phase samples under a wide range of fO2 (fixed with CO/CO2 mixtures or by solid oxygen buffers) in sub-solidus conditions (1,000–1,300°C) at 1 bar. Runs lasted 24 h at 1,300°C and up to 240 h at 1,000°C and were terminated by quenching in water. All run products are polycrystalline, roughly equigranular aggregates, with grain sizes of 10–50 m. They were examined and analysed with the SEM and EMP. Tmt compositions are broadly in accordance with the current models at moderate fO2, but significantly richer in Ti at low fO2 and high T, due to cationic vacancies. Ilmss compositions depart from the predicted values practically at all fO2 and T conditions, which is related to unsatisfactory thermodynamic models for the rhombohedral oxide. For Ilmss–Psbss assemblages the best agreement between our data and current calculations is at 1,000°C and moderately high fO2. Otherwise, experimental and calculated data strongly disagree. The experimental data set on the three Fe–Ti oxide solid solutions presented here is intended to support new versions of both the titanomagnetite–ilmenitess thermo-oxybarometer and the ilmenitess–pseudobrookitess oxybarometer.  相似文献   

5.
Sapphirine and spinel can accommodate significant ferric iron and therefore the mineral equilibria involving these phases must be sensitive to a(O2). In this paper we examine the theoretical phase relationships involving sapphirine and spinel in addition to sillimanite, garnet, cordierite, rutile, hematite-ilmenite solid solution (henceforth ilmenite), and magnetite-ulvospinel solid solution (henceforth magnetite), in the presence of quartz and hypersthene in the system FeO-MgO-Al2O3-SiO2-TiO2-O2 (FMASTO), with particular reference to the topological inversion in P-T postulated by Hensen (Hensen 1986). Documented natural associations suggest that the appropriate topology for assemblages involving magnetite and ilmenite is Hensen's higher a(O2) one, while, in contrast, the topology for assemblages involving ilmenite and rutile is the lower a(O2) one. The exact configuration of the inversion between these two topologies remains uncertain because of uncertainties in the ferric/ferrous iron partitioning between sapphirine and spinel-cordierite at high temperatures. By comparison with experimental data and natural occurences, the sillimanite-sapphirine-cordierite-garnet-hypersthene-quartz assemblage is in equilibrium at about 1000°–1020° C and 7–8 kbars, while sapphirine-cordierite-spinel-garnet-hypersthene-quartz occurs at temperatures in excess of those attainable during crustal metamorphism, for ilmenite-rutile buffered assemblages. This implies that sapphirine-rutil-ehypersthene-quartz assemblages, as found in the Napier Complex, Antarctica, can only occur at > 1000° C. Also, spinel-rutile-hypersthene-quartz assemblages should not be found in rocks because temperatures in excess of 1100° C are expected to be involved in their formation. The temperatures of formation of spinel-sillimanite-sapphirine-garnethypersthene-quartz, sapphirine-spinel-cordierite-sillimanite-hypersthene-quartz, and sillimanite-spinel-cordieritegarnet-hypersthene-quartz in assemblages buffered by magnetite and ilmenite are less well constrained, but are likely to be in the range 900°–1000° C. These conclusions apply to rocks with compositions close to FMASTO; the perturbing effects of substantial concentrations of additional components, in particular Ca, mainly in garnet, and Zn and Cr, mainly in spinel, may invalidate these conclusions.  相似文献   

6.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

7.
An experimental study of the partitioning of Mg and Fe between synthetic biotite and an aqueous chloride solution in the supercritical region as a function of temperature, pressure and concentration of Mg and Fe is reported. In the temperature range 500°–700° C and the pressure range 25–200 MPa, the Mg-Fe distribution between biotite and the chloride solution can be described by distribution curves based on the ideal solution model within a data scattering of 8%. Mg is preferentially partitioned into biotite, and Fe prefers the solution. This tendency is enhanced with increasing temperature. The distribution constants for the Mg-Fe exchange reactions in the system K(Mg,Fe)3AlSi3O10(OH)2-(Mg,Fe)Cl2-KCl-H2O have been determined. The present data favor a model in which the activity of Fe and Mg in biotite is close to the mole fraction at temperatures above 500° C. Comparison of the Mg-Fe partitioning between biotite-chloride solution and olivine-chloride solution reveals a slight enrichment of Fe in olivine relative to biotite.  相似文献   

8.
A model is developed for the thermodynamic properties of Fe2+–Mg2+-aluminate-titanate-ferrite spinels of space group Fd3m. The model incorporates an expression for the configurational entropy of mixing which accounts for long-range order over tetrahedral and octahedral sites. Short-range order or departures from cubic symmetry are not considered. The non-configurational Gibbs energy is formulated as a second degree Taylor expansion in six linearly independent composition and ordering variables. The model parameters are calibrated to reproduce miscibility gap constraints, order-disorder phenomena in MgAl2O4 and MgFe2O4, and Fe2+–Mg2+ partitioning data between olivine and: (1) aluminate spinels; (2) ferrite spinels; (3) titanate spinels; (4) mixed aluminate-ferrite spinels. This calibration is achieved without invoking non-configurational excess entropies of mixing. The model predicts that the ordering state of FeAl2O4 is more normal than that of MgAl2O4. It also successfully accounts for heat of solution measurements and activity-composition relations in the constituent binaries. Phase equilibrium constraints require that the structure of Fe3O4 is more inverse than random at all temperatures and that Mg2+ has a strong tetrahedral site preference with respect to that of Fe2+. The analysis suggests that in the titanates short range order on octahedral sites may be significant at temperatures as high as 1300° C. Constraints developed from calibrating the thermodynamic properties of Fe2+–Mg2+-aluminatetitanate-ferrite spinel solid solutions permit extension of the database of Berman (1988) to include estimates of the end-member properties of hercynite (FeAl2O4), ulvöspinel (Fe2TiO4), MgFe2O4 and cubic Mg2TiO4. In constructing these estimates, provision is made for low-temperature magnetic entropy contributions and the energetic consequences of disordering the aluminates and the ferrites. These estimates are consistent with all of the available low-temperature adiabatic calorimetry, high-temperature heat content, and heat of solution measurements on the end-members. The analysis implies that there is a substantial heat capacity anomaly in the range 300°–900° C associated with disordering of the MgAl2O4 structure while that in FeAl2O4 becomes significant at temperatures above 700° C. The same heat capacity response in the ferrites indicates that the order/disorder transformation is coupled to the antiferromagnetic-paramagnetic transition in MgFe2O4 but takes place well above the ferrimagnetic-paramagnetic transition in magnetite. The proposed model is internally consistent with solution theory reported elsewhere for Fe2+–Mg2+ olivines and orthopyroxenes (Sack and Ghiorso 1989), rhombohedral oxides (Ghiorso 1990a) and the remaining end-member properties of Berman (1988).  相似文献   

9.
Densities of 21 silicate liquids have been determined from 1,000 ° to 1,600 ° C. The compositions studied contain from two to eight oxide components and have the following ranges in composition (mole %): SiO2, 35–79%; TiO2, 4–36%; Al2O3, 5–25%; FeO, 11–41%; MgO, 7–28%; CaO, 7–35%; Na2O, 5–50%; and K2O, 4–20%. The compositions thus cover the upper range observed in magmas for each oxide. Precision for each determination of liquid density is always better than ±1%.Volumes/gfw (gram formula weight) calculated from the density measurements and the chemical compositions of the analyzed liquids have been combined with data on 96 silicate liquids reported in the literature. From this data set we derive, by using multiple linear regression, partial molar volumes of the components SiO2, TiO2, A12O3, FeO, MgO, CaO, Na2O, and K2O at five temperatures. The standard deviation of the multiple regression is 1.8% of the molar volumes, which is considered about equal to the total errors due to compositional and instrumental uncertainties.These derived partial molar volumes have been used to calculate volumes/gfw of natural silicate liquids which are found to agree within 1% of the measured values. No compositional dependence of the partial molar volumes can be detected within the error considered to be typical of the measurements. This is further supported by the close agreement between the calculated volumes of CaMgSi2O6 and Fe2SiO2 liquids derived from the initial slopes of their fusion curves and their heats of fusion, and the volumes obtained by summing the respective partial molar volumes. The experimental data indicate that silicate liquids mix ideally with respect to volume, over the temperature and composition range of this data set.  相似文献   

10.
Compositional zonation in garnets in peridotite xenoliths   总被引:1,自引:0,他引:1  
Garnets in 42 peridotite xenoliths, most from southern Africa, have been analyzed by electron probe to seek correlations between compositional zonation and rock history. Xenoliths have been placed into the following 6 groups, based primarily upon zonation in garnet: I (12 rocks)-zonation dominated by enrichment of Ti and other incompatible elements in garnet rims; II (10 rocks)-garnet nearly homogeneous; III (8 rocks)-rims depleted in Cr, with little or no related zonation of Ti; IV (3 rocks)-slight Ti zonation sympathetic to that of Cr; V (3 rocks)-garnet rims depleted or enriched in Cr, and chromite included in garnet; VI (6 rocks)-garnets with other characteristics. Element partitioning between olivine, pyroxene, and garnet rims generally is consistent with the assumption of equilibrium before eruption. Although one analyzed rock contains olivine and pyroxene that may have non-equilibrated oxygen isotopes, no corresponding departures from chemical equilibrium were noted. Causes of zoning include melt infiltration and changes in temperature and pressure. Zonation was caused or heavily influenced by melt infiltration in garnets of Group I. In Groups III, IV, and V, most compositional gradients in garnets are attributed to changes in temperature, pressure, or both, and gradients of Cr are characteristic. There are no simple relationships among wt% Cr2O3 in garnet, calculated temperature, and the presence of compositional gradients. Rather, garnets nearly homogeneous in Cr are present in rocks with calculated equilibration temperatures that span the range 800–1500 °C. Although the most prominent Cr gradients are found in relatively Cr-rich garnets of rocks for which calculated temperatures are below 1050 °C, gradients are well-defined in a Group IV rock with T1300 °C. The variety of Cr gradients in garnets erupted from a range of temperatures indicates that the zonations record diverse histories. Petrologic histories have been investigated by simulated cooling of model rock compositions in the system CaO–MgO–Al2O3–SiO2–Cr2O3. Proportions and compositions of pyroxene and garnet were calculated as functions of P and T. The most common pattern of zonation in Groups III and IV, a decrease of less than 1 wt% Cr2O3 core-to-rim, can be simulated by cooling of less than 200 °C or pressure decreases of less than 1 GPa. The preservation of growth zonation in garnets with calculated temperatures near 1300 °C implies that these garnets grew within a geologically short time before eruption, probably in response to fast cooling after crystallization of a small intrusion nearby. Progress in interpreting garnet zonations in part will depend upon determinations of diffusion rates for Cr. Zonation formed by diffusion within garnet cannot always be distinguished from that formed by growth, but Ca–Cr correlations unlike those typical of peridotite suite garnets may document diffusion.  相似文献   

11.
Experimental data are presented for the solubility of NaNbO3 in the ternary system CaCO3–CaF2–NaNbO3 (or calcite–fluorite–lueshite) over the temperature range 500–1,000°C at 0.1 GPa pressure. Liquidus to solidus phase relationships are given for the pseudo-binary join ([CaCO3]60[CaF2]40)100-x–(NaNbO3)x (0<x<60 wt%). These data show that the maximum solubility of NaNbO3 in these liquids is about 17 wt% (or 13.8 wt% Nb2O5) at approximately 930°C, and is represented by the appearance of pyrochlore as the primary liquidus phase. The sub-liquidus assemblages with decreasing temperature for NaNbO3 contents of 20–50 wt% are: pyrochlore + liquid; pyrochlore + CaF2 + liquid; pyrochlore + CaF2 + CaCO3 + liquid. The solidus assemblage is pyrochlore + CaF2 + CaCO3 at temperatures of approximately 700°C (20 wt% NaNbO3) and 600°C (40 wt% NaNbO3). NaNbO3 is present only in sub-solidus assemblages. These data show that in this fluorine-bearing anhydrous system pyrochlore is the principal Nb-hosting supra-solidus phase, in contrast to fluorine-free hydrous melts from which perovskite-structured compounds crystallize. The crystallization of pyrochlore and/or perovskite-structured compounds from haplocarbonatite liquids is thus considered to be dependent upon the F/OH ratio of the melt.  相似文献   

12.
Whole-rock, major and trace element analyses and microprobe mineral analyses were conducted on serpentinized peridotites recovered from the walls of a MAR (Mid-Atlantic Ridge) 43° N fracture zone. These peridotites are extensively serpentinized; serpentine usually makes up 30–100 vol. percent of the bulk rocks. The relict minerals observed consist mainly of olivine and orthopyroxene with subordinate amounts of clinopyroxene and brown spinel. The range in olivine composition is very limited (Fo91–92). Orthopyroxene forms large, anhedral crystals with clinopyroxene exsolution lamellae and shows undulose extinction with bent cleavages and lamellae. Broad beam microprobe analyses indicate that the composition range of orthopyroxene is also limited (En89.1–87.6Fs8.2-8.0Wo2.7–4.4; Al2O3=1.82–2.64 wt%; Cr2O3=0.63–0.88 wt%). Clinopyroxene tends to fringe large orthopyroxene crystals or fills the interstices between them. The Mg/Fe ratios of clinopyroxene are practically constant; however, the Ca/(Ca + Mg + Fe) ratios range from 0.48 to 0.45. The Cr/(Cr+Al) and Mg/(Mg+ Fe2+) ratios of brown spinel range from 0.57 to 0.36 and 0.69 to 0.56, respectively. The geothermometers utilizing coexisting spinel lherzolite mineral assemblages suggest that the MAR 43° N peridotites attained equilibrium at temperatures from 1100° to 1250° C.Peridotites recovered from the ocean floor are generally considered to have been subjected to partial melting processes and are regarded as residues left after primary magma was removed. Major element chemistry of the MAR 43° N peridotites are compared with those of the ocean-floor ultramafic tectonites reported previously and used together with those published data to demonstrate that the major element abundances of the oceanfloor peridotites define an average trend which is compatible with removal of primary magma from these peridotites at moderate pressures (10–15 kb). Then, the most primitive abyssal tholeiite glasses could be produced by ca. 10% olivine fractionation of such primary magma. Extensive fractionation of olivine and/or orthopyroxene from picritic liquids which are in equilibrium with the lherzolitic or harzburgitic mantle sources at higher pressures (>20 kb) could not yield the majority of the most primitive abyssal tholeiite glasses.  相似文献   

13.
The equilibrium (Mg, Fe, Zn)3Al2Si3O12+2Al2SiO5=3(Mg, Fe, Zn)Al2O4+5SiO2 garnet + sillimanite/kyanitc = spinel + quartz was calibrated in the piston-cylinder apparatus between 11 and 30 kbar, and over the temperature range of 950 to 1200°C. Three experimental mixes of Mg no. [100*MgO/(MgO+FeO)] 40, 47 and 60, in the FeO –MgO–Al2O3–SiO2–ZnO (FMASZn) system were used under low oxygen fugacities and anhydrous conditions. We derive a ternary Fe–Mg–Zn symmetric mixing model for aluminous spinels in equilibrium with garnet, to quantify the increase in gahnitic end-member of spinel with increasing pressure and descreasing temperature. Further experiments in the spinel-cordieritequartz-sillimanite field were combined with garnet-cordierite data from the literature to produce a consistent set of equations describing the exchange reactions in FMASHZn relevant to quartz-sillimanite bearing rocks at granulite facies conditions. As spinel is an important mineral participating in many rocks of aluminous composition at granulite-facies conditions, and as zinc contributes to an enlargement of spinel's stability field towards higher pressures and lower temperatures, the thermobarometric calibrations presented here will be most significant in delineating the prograde and retrograde trajectory of P-T paths.  相似文献   

14.
The magnetic behaviour and Curie temperatures (T C ) of spinelloids and spinels in the Fe3O4–Fe2SiO4 and Fe3O4–(Mg,Fe)2SiO4 systems have been determined from magnetic susceptibility (k) measurements in the temperature range –192 to 700 °C. Spinelloid II is ferrimagnetic at room temperature and the k measurements display a characteristic asymmetric hump before reaching a T C at 190 °C. Spinelloid V from the Mg-free system is paramagnetic at room temperature and hysteresis loops at various low temperatures indicate a ferri- to superparamagnetic transition before reaching the T C . The T C shows a non-linear variation with composition between –50 and –183 °C with decreasing magnetite component (X Fe3O4). The substitution of Mg in spinelloid V further decreases T C . Spinelloid III is paramagnetic over nearly the total temperature range. Ferrimagnetic models for spinelloid II and spinelloid V are proposed. The T C of Fe3O4–Fe2SiO4 spinel solid solutions gradually decrease with increasing Si content. Spinel is ferrimagnetic at least to a composition of X Fe3O4=0.20, constraining a ferrimagnetic to antiferromagnetic transition to occur at a composition of X Fe3O4<0.20. A contribution of the studied ferrimagnetic phases for crustal anomalies on the Earth can be excluded because they lose their magnetization at relatively low temperatures. However, their relevance for magnetic anomalies on other planets (Mars?), where these high-pressure Fe-rich minerals could survive their exhumation or were formed by impacts, has to be considered.  相似文献   

15.
We provide petrographic, major and trace element data for over 30 spinel peridotite xenoliths from the Tokinsky Stanovik (Tok) volcanic field on the Aldan shield to characterize the lithospheric mantle beneath the south-eastern margin of the Siberian craton, which formed in the Mesoproterozoic. High equilibration temperatures (870–1,010°C) of the xenoliths and the absence of garnet-bearing peridotites indicate a much thinner lithosphere than in the central craton. Most common among the xenoliths are clinopyroxene-poor lherzolites and harzburgites with Al2O3 and CaO contents nearly as low as in refractory xenoliths from kimberlite pipes (Mir, Udachnaya) in the central and northern Siberian craton. By contrast, the Tok peridotites have higher FeO, lower Mg-numbers and lower modal orthopyroxene and are apparently formed by shallow partial melting (3 GPa). Nearly all Tok xenoliths yield petrographic and chemical evidence for metasomatism: accessory phlogopite, amphibole, phosphates, feldspar and Ti-rich oxides, very high Na2O (2–3.1%) in clinopyroxene, LREE enrichments in whole-rocks.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
Melting relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been reinvestigated using Schreinemakers analysis and hydrothermal experiments. The reaction sanidine+muscovite+zoisite+quartz+vapor =melt has been bracketed at 10, 15, and 20 kbars and 670–680, 680–690, and 690–700° C, respectively and it marks the lowest solidus temperatures in the system investigated.Below 10 kbars, experimental data on the beginning of melting in zoisite- or muscovite-bearing anorthite+sanidine assemblages have been obtained, which are not showing any differences and therefore point to melt compositions close to the feldspar-quartz join.  相似文献   

17.
Voluminous low temperature rhyolitic magmas in New Zealand   总被引:1,自引:0,他引:1  
The glassy acid pumices, lavas and ignimbrites of the Pleistocene-Recent Central volcanic region of New Zealand contain iron-titanium oxide microphenocrysts, whose composition has been determined. Thirteen coexisting titanomagnetite-ilmenite pairs (all onephase and homogeneous) give two groups of equilibration temperatures: 735–780° C for amphibole-bearing rhyolites, and 860–890° C for very young non-amphibole-bearing pumices. O18/O16 analyses of coexisting phenocrysts from five amphibole-bearing rhyolites give estimated temperatures in the range 695–860° C, with an average of approximately 780° C.Using Zen's (1971) thermodynamic data on anthophyllite, the fugacity of water has been calculated for two rhyolites with cummingtonite-orthopyroxene-quartz phenocrysts; at 735° C and 745° C, fH2O is 1100 and 1300 bars respectively. These values are consistent with that derived for an analysed phenocryst assemblage of biotite-sanidine-magnetite. As all the investigated rhyolites contain phenocrysts of orthopyroxene and magnetite, it is suggested that the small increase in of the low-temperature amphibole assemblages in comparison to the amphibole-free assemblages is caused by higher silica activity, as quartz phenocrysts are absent in the high-temperature amphibole-free rhyolites.The existence of large-scale rhyolitic magmas, with phenocryst contents ranging from 0–40 %, at temperatures in the lower part of the magmatic range, is interpreted to be consistent with previously suggested models of upper crustal anatexis in New Zealand, in which the breakdown of micas contributed the water necessary for partial melting.Details of the occurrence and chemistry of the cummingtonite phenocrysts are given in the appendix.  相似文献   

18.
Five lizardite-chrysotile type serpentinites from California, Guatemala and the Dominican Republic show oxygen isotope fractionations of 15.1 to 12.9 per mil between coexisting serpentine and magnetite (O18 magnetite=–7.6 to –4.6 per mil relative to SMOW). Nine antigorites (mainly from Vermont and S. E. Pennsylvania) show distinctly smaller fractionations of 8.7 to 4.8 per mil (O18 magnetite=–2.6 to +1.7 per mil). Two lizardite and chrysotile serpentinites dredged from the Mid-Atlantic Ridge exhibit fractionations of 10.0 and 12.4 per mil (O18 magnetite=–6.8 and –7.9 per mil, respectively), whereas an oceanic antigorite shows a value of 8.2 per mil (O18 magnetite=–6.2). These data all clearly indicate that the antigorites formed at higher temperatures than the chrysotilelizardites. Electron microprobe analyses of magnetites from the above samples show that they are chemically homogeneous and essentially pure Fe3O2. However, some magnetites from certain other samples that show a wide variation of Cr content also give very erratic oxygen isotopic results, suggesting non-equilibrium. An approximate serpentine-magnetite geothermometer curve was constructed by (1) extrapolation of observed O18 fractionations between coexisting chlorites and Fe-Ti oxides in low-grade pelitic schists whose isotopic temperatures are known from the quartz-muscovite O18 geothermometer, and (2) estimates of the O18 fractionation factor between chlorite and serpentine (assumed to be equal to unity). This serpentine-magnetite geothermometer suggests approximate equilibrium temperatures as follows: continental lizardite-chrysotile, 85° to 115° C; oceanic lizardite and chrysotile, 130° C and 185° C, respectively; oceanic antigorite, 235° C; and continental antigorites, 220° to 460° C.Contribution No. 2029 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   

19.
New experimental data are presented at stability conditions of paragenesis in the system K2O-CaO-Al2O3-SiO2-H2O. These results are used to estimate the pressure temperature conditions under which minute inclusions, mostly consisting of zoisite/clinozoisite and muscovite, have crystallized in calcic plagioclases from metatonalites and metadiorites (Hohe Tauern, Austria). In the pressure region 1.5–8 kb the following reactions were observed: zoisite+muscovite+quartz=anorthite+potash feldspar+water (1) grossularite+muscovite+quartz=anorthite+potash feldspar+water (2) zoisite+quartz=anorthite+grossularite+water (3) natural plagioclase with its inclusions (zoisite/clinozoisite and muscovite) (4) =more basic plagioclase without inclusions.In order to determine the curves of reaction (1), (2) and (3), runs were made in hydrothermal bombs using synthetic phases crystallized from gels as starting materials. The reaction curves (1), (2) and (3) intersect at an invariant point at 7.25±0.5 kb and 685±20° C. In runs to define the reaction (4), it could be demonstrated that the inclusion minerals zoisite/ clinozoisite and muscovite became instable at slightly lower temperatures than those occurring in reaction (1). These facts illustrate that the reaction curve (1), found in the pure system, gives possible information about the pressure temperature conditions during the formation of the inclusions.  相似文献   

20.
In the system FeO-MgO-Al2O3-SiO2 (FMAS), the equilibrium Al-content of orthopyroxene coexisting with olivine and spinel was reversed in 18 experiments at 1 340° C and 11 or 18 kbar, using graphite capsules and PbO flux. In the CFMAS system (+CaO), the Al-contents of ortho- and clinopyroxene coexisting with olivine and spinel were reversed in 5 experiments at 1 340° C and 18 kbar. The Al-content of clinopyroxene remains constant, while the Al-content of orthopyroxene increases with increasing Fe-content. The Ca-content of clinopyroxene is independent of the Al-content. The data were used to describe the Fe-Mg site distribution in the aluminous orthopyroxene. The Fe-Mg partitioning among orthopyroxene, olivine, spinel and garnet, combined with the Al-content of orthopyroxene, was used to calculate orthopyroxene based thermobarometers in the FMAS, CFMAS and NCFMAS (+Na2O) systems. The thermobarometers were applied to the Adirondack metagabbros, which gave equilibration temperatures of 700–800° C and pressures 7.4–10.3 kbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号