首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.  相似文献   

2.
The assertion that the thermohaline circulation(THC)is driven and sustained by mechanical energy has been increasingly accepted.The simplest conceptual model describing the THC is the Stommel two-box model.Given the vertical stratification in the real ocean,layered models were designed and used.In this research,using a two-layer conceptual model based on energy constraint,we studied basic features of thermal-mode and saline-mode circulations.We focused on the effects of freshwater flux and mixing energy on the intensity and multiple equilibrium states of the THC.The results show that more important than affecting the THC intensity,both the decrease of freshwater flux and increase of mixing energy can lead to an"abrupt transition"in the THC from a stable saline to a stable thermal mode,which further develops the THC energy theory.  相似文献   

3.
4.
Abstract

We impose a surface forcing on the 2D, Boussinesq, thermohaline equations in a rectangular domain, in the form of equatorially symmetric cosine distributions of salinity flux and temperature. This system may be seen as an idealization of the ocean thermohaline circulation on the global scale over intervals of centuries or millenia. Multiple steady states are found numerically. They reflect the competition between the opposite signs of the temperature and salinity-driven equatorially symmetric circulations. There are also pole-to-pole, equatorially asymmetric circulations. In the control space of the temperature and salinity-flux forcing amplitudes, these equilibria form two cusp catastrophes, and transitions between stable equilibria occur through several distinct bifurcations. These catastrophes can be reproduced in simple box models connecting stirred reservoirs through capillary pipes. This steady-state analysis may provide a framework for a better understanding of climatic transitions between different stable regimes of the ocean-atmosphere system.  相似文献   

5.
The Changjiang diluted water (CDW) around Jeju Island between 2002 and 2006 in response to external forcings, such as wind, tidal forcing and low river discharge, is studied using a three-dimensional model. The model results suggest that wind largely determines spatial differences of CDW and the freshwater export toward Jeju Island between two years. In 2006, when northwestward wind blows during mid June to mid August, the wind-induced Ekman flow causes a broad northeastward extension of CDW and carries a significant amount of freshwater northeastward Jeju Island in August. On the other hand, in 2002 northward wind during mid July to early August drives the CDW to the southwest of Jeju Island, and thereafter the CDW is mainly advected northeastward along the Cheju Current during mid August when the wind becomes weak. Therefore, the amount of freshwater around Jeju Island increases in September, not in August. The response to tidal forcing shows that tide-induced vertical mixing tends to enhance a meander of CDW around Changjiang Bank and shift the CDW flowing into the Yellow Sea southeastward toward Jeju Island. As a result, the amount of freshwater toward Jeju Island becomes larger than that in no-tides case. The summer low river discharge as a flood control scenario has little influence on the spatial behavior of CDW around Jeju Island although the discharge contributes to the amount of freshwater around Jeju Island.  相似文献   

6.
 The three-dimensional time-mean density distribution in the ocean is determined not only by the time-mean fluxes of heat and freshwater at the sea surface, but also by time-mean vertical currents and time-mean density fluxes due to oceanic transients excited by fluctuating fluxes at the sea surface. The effects of these various processes on the global density fields are assessed using a balance equation of the variance of spatial density anomalies and a millennium integration with an atmosphere–ocean general circulation model. It is found that spatial density anomalies are generated by the time-mean heat fluxes at the sea surface and destroyed by the time-mean surface freshwater flux, by sinking of dense water and rising of less dense water, and finally by density fluxes associated with transients. The last two processes take place essentially in the oceanic interior. Since density fluxes of transient eddies act to reduce the existing density differences between the Atlantic/Southern Oceans and the other oceans, their presence could affect the global density balance, and from that the thermohaline circulation and the stability of this circulation. Received: 4 October 2001 / Accepted: 10 October 2002 Responsible Editor: Richard J. Greatbatch Acknowledgements I thank Ulrich Cubasch and his colleagues for providing me with the ECHAM3/LSG integration, Peter Müller and Richard Greatbatch for valuable suggestions.  相似文献   

7.
Deep circulation driven by strong vertical mixing in the Timor Basin   总被引:1,自引:1,他引:0  
The importance of deep mixing in driving the deep part of the overturning circulation has been a long debated question at the global scale. Our observations provide an illustration of this process at the Timor Basin scale of ~1000 km. Long-term averaged moored velocity data at the Timor western sill suggest that a deep circulation is present in the Timor Basin. An inflow transport of ~0.15 Sv is observed between 1600 m and the bottom at 1890 m. Since the basin is closed on its eastern side below 1250 m depth, a return flow must be generated above 1600 m with a ~0.15 Sv outflow. The vertical turbulent diffusivity is inferred from a heat and transport balance at the basin scale and from Thorpe scale analysis. Basin averaged vertical diffusivity is as large as 1 × 10?3 m2 s?1. Observations are compared with regional low-resolution numerical simulations, and the deep observed circulation is only recovered when a strong vertical diffusivity resulting from the parameterization of internal tidal mixing is considered. Furthermore, the deep vertical mixing appears to be strongly dependent on the choice of the internal tide mixing parameterization and also on the prescribed value of the mixing efficiency.  相似文献   

8.
The mean seasonal hydrography and circulation of the Western Iberian Margin (WIM) are studied by means of a high-resolution configuration of the Regional Oceanic Modeling System. A comparison of 5-year model averages for January and July with climatological datasets shows a general good agreement in the reproduction of the mean water mass properties and hydrographic distribution. We find that there is a prevailing tendency for slope poleward flow at about 80–100 km offshore at all latitudes from the surface to 1,500 m with strong vertical coupling. This northward flow, which is mainly along slope and amounts up to 8–10 cm s?1, exhibits several mean flow recirculation regions on its way and evidences of an offshore pathway of poleward flow. Transports at different zonal sections further confirm the poleward flow tendency with two peaks of poleward transport in summer (3–10 Sv) and winter (2–7 Sv). The transport time series emphasize the seasonal character of the alongshore circulation and the interannual intrinsic variability of the circulation, since the forcing fields are climatological. As a conceptual essay with the purpose of assessing the Mediterranean Water flow influence on the WIM mean circulation, a second model configuration is setup, where the Mediterranean outflow into the study domain is removed. We find that there is an attenuation of the mesoscale field, but the slope poleward flow intensifies and remains as a mean dynamical feature closer to the upper slope.  相似文献   

9.
A simple box model of the circulation into and inside the ocean cavern beneath an ice shelf is used to estimate the melt rates of Antarctic glaciers and ice shelves. The model uses simplified cavern geometries and includes a coarse parameterization of the overturning circulation and vertical mixing. The melting/freezing physics at the ice shelf/ocean interface are those usually implemented in high-resolution circulation models of ice shelf caverns. The model is driven by the thermohaline inflow conditions and coupling to the heat and freshwater exchanges at the sea surface in front of the cavern. We tune the model for Pine Island Glacier and then apply it to six other major caverns. The dependence of the melting rate on thermohaline conditions at the ice shelf front is investigated for this set of caverns, including sensitivity studies, alternative parameterizations, and warming scenarios. An analytical relation between the melting rate and the inflow temperature is derived for a particular model version, showing a quadratic dependence of basal melting on small values of the temperature of the inflow, which changes to a linear dependence for larger values. The model predicts melting at all ice shelf bases in agreement with observations, ranging from below a meter per year for Ronne Ice Shelf to about 25 m/year for the Pine Island Glacier. In a warming scenario with a one-degree increase of the inflow temperature, the latter glacier responds with a 1.4-fold increase of the melting rate. Other caverns respond by more than a tenfold increase, as, e.g., Ronne Ice Shelf. The model is suitable for use as a simple fast module izn coarse large-scale ocean models.  相似文献   

10.
Observations of thermohaline properties and currents were undertaken in the Curimataú River estuary (6°18′S), Rio Grande do Norte state (RN), Brazil, during consecutive neap–spring tidal cycles in the austral autumn rainy season. Highly asymmetric neap tide along channel velocities (−0.4 to 0.9 m s−1) and highly stratified conditions were generated by an increase of the buoyancy energy from the freshwater input (R iE≈5.6). During the spring-tidal cycle the river discharge decreased and the longitudinal velocity components were higher, less asymmetrical (−0.8 to 1.1 m s−1) and semidiurnal, associated with moderately stratified conditions (R iE≈0.1) due to the increase of the kinetic tidal energy forcing mechanism. The overall salinity variation from surface to bottom during two tidal cycles was from 20.5 to 36.3 and 29 to 36.7 in the neap and spring tide experiments, respectively; in the last experiment, the tropical water (TW) mass intrusion was enhanced. The net salt transport reversed from down to up estuary during the neap and spring tide experiments, respectively, varied from 6.0 to –2.0 kg m−1 s−1, an indication of changes in the main forcing of the estuary dynamics. Evaluation of a classical steady analytical model, in comparison with nearly steady experimental vertical profiles of velocity, shows an agreement classifiable as reasonably fair.  相似文献   

11.
Development of thoughts on tracer transport mechanisms in the stratosphere which lead to new approaches to two-dimensional modeling of the tracer problem is reviewed.Three-dimensional motions of individual air parcels affected by a planetary wave are investigated theoretically, treating a steady, upward propagating wave in a uniform flow. It is shown that trajectories of air parcels are of elliptical form when projected onto the meridional plane and that they have no mean meridional or vertical motion, even though the usual zonal Eulerian-mean vertical motion exists. The origin of the difference between the mean air parcel motion and the Eulerian-mean motion is discussed.On the basis of the knowledge of air parcel motion, two approaches to two-dimensional modeling are considered. The generalized Lagrangian mean motion (quasi-zonal weighted mean taken over a meandering material tube), recently introduced by Andrews and McIntyre, is identical with the mean motion of an air parcel in a steady state. Such a mean meridional circulation may be used for advecting a tracer in the meridional plane in a two-dimensional model. The transport effect is represented solely by the advection and an eddy transport does not appear in this scheme, to a first approximation.The finding that trajectories of air parcels are elliptical necessitates a reexamination of the Reed-German eddy diffusivity currently used in two-dimensional chemical-dynamical models. By applying a mixing length type hypothesis, we derive an eddy diffusivity formula for use in Eulerian-mean calculations, which, in the case of a conservative tracer is dominated by an anti-symmetric tensor. The eddy transport due to this anti-symmetric tensor diffusivity is of advective type (not diffusive) and has the effect of taking the Stoke drift effect into account, when used in the usual Eulerian-mean formulation.  相似文献   

12.
A two-dimensional numerical model is applied to a coastal ocean wherein alongshore elevation and density gradients, normally calculated by a three-dimensional model, are instead supplied by climatologically averaged data for the California Current System between 25 and 40°N. Surface wind stress is also obtained from climatological data. Both surface and bottom boundary layers are resolved in the model calculations; a second moment turbulence closure submodel supplies vertical diffusivities. Near steady state solutions are possible when surface buoyancy flux is imposed at the surface.Model results are as follows: Southward wind stress produces a broad equatorward current with an embedded coastal jet in accordance with previous studies. Positive wind stress curl reduces the jet current and produces a poleward undercurrent which then surfaces as the curl is increased. The jet currents are reduced and poleward flow increases as bottom steepness increases; to a lesser extent, inclusion of the beta effect has a similar effect. The existence of near bottom, poleward or equatorward flow is explained rather simply in terms of the bottom stress resulting from the alongshore balance of surface wind stress and vertically integrated pressure gradient, the latter involving the alongshore surface elevation and density gradient. A further finding is that the upwelling circulation associated with wind stress is confined to the top 200 to 300 m of the ocean along the California coast.  相似文献   

13.
Much of the knowledge about ocean circulation stems from rather simple analytical models. The behavior of the meridional overturning and, more specifically, the thermohaline-induced part of the global ocean circulation, under changing surface conditions, is often judged by the bifurcation structure of box models with very low (low-order) resolution. The present study proposes a new low-order model of the thermohaline-driven circulation, which is constructed by severe truncation of a spectral decomposition of the two-dimensional equations of motion (vorticity and heat/salt balances). The physical ingredients of the new model are superior to box models because it has a continuous lateral and vertical representation of the fields and finite diffusion coefficients for heat and salt. The building of the spectral model involves much mathematical labor because the structure functions must be constructed in accordance with the boundary conditions for conservation of momentum, mass, heat, and salt. Furthermore, a number of complicated coupling coefficients must be evaluated. Like the box models, the spectral model is a dynamical system with mathematical complexity, but in most of the versions that we analyze, it still can be handled by standard analytical procedures. These versions are the spectral counterparts of the classical box models of Stommel, Rooth, and Welander, adjusted to the Atlantic overturning. A detailed comparison of the model types reveals a similar bifurcation pattern of box and spectral low-order configurations under symmetric and asymmetric forcing conditions and slight perturbations thereof (we use mixed boundary conditions for heat and salt and the surface freshwater flux as a continuation parameter). Comparison of the spectral low-order models with models towards a higher resolved range, namely, the two-dimensional overturning models for the meridional plane, reveals a close resemblance as well. A major difference of box and spectral models is the appearance of parameter windows in the latter, where only unstable steady states exist. The spectral models then show limit cycles, as well as chaotic trajectories with time scales of thousands of years.  相似文献   

14.
Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January–22 February), winter conditions (5–29 May) and the early part of the upwelling season (10 November–12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north–south wind reversals at periods of 2–5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.  相似文献   

15.
The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200?km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.  相似文献   

16.

The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.

  相似文献   

17.
The Mediterranean Sea is a region of intense air–sea interactions, with in particular strong evaporation over sea which drives the thermohaline circulation. The Mediterranean region is also prone to strong precipitation events characterized by low spatial extent, short duration, and high temporal variability. The impacts of intense offshore precipitation over sea, in the Gulf of Lions which is a spot for winter deep convection, are investigated using four sensitivity simulations performed at mesoscale resolution with the eddy-resolving regional ocean model NEMO-MED12. We use various atmospheric fields to force NEMO-MED12, downscaled from reanalyses with the non-hydrostatic mesoscale Weather Research and Forecasting model but differing in space resolutions (20 and 6.7 km) or in time frequencies (daily and three-hourly). This numerical study evidences that immediate, intense, and rapid freshening occurs under strong precipitation events. The strong salinity anomaly induced extends horizontally (≃50 km) as vertically (down to 50 m) and persists several days after strong precipitation events. The change in the space resolution of the atmospheric forcing modifies the precipitating patterns and intensity, as well as the shape and the dynamics of the low-salinity layer formed are changed. With higher forcing frequency, shorter and heavier precipitation falls in the ocean in the center of the Gulf of Lions, and due to a stronger vertical shear and mixing, the low-salinity anomaly propagates deeper.  相似文献   

18.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

19.
《Continental Shelf Research》1998,18(10):1157-1177
The spatial and temporal variability of water entering and leaving the Chesapeake Bay estuary was determined with a spatial resolution of 75 m. The four cruises during which the observations were made took place under different conditions of freshwater discharge, tidal phase, and wind forcing. The tidal variability of the flows was dominated by the semidiurnal constituents that displayed greatest amplitudes and phase lags near the surface and in the channels that lie at the north and south sides of the entrance. The subtidal variability of the flows was classified into two general scenarios. The first scenario occurred during variable or persistently non-southwesterly winds. Under these conditions there was surface outflow and bottom inflow in the two channels, inflow over the shoal between the two channels, and possible anticyclonic gyre formation over the shoal. The flow pattern in the channels was produced by gravitational circulation and wind forcing. Over the shoal it was caused by tidal rectification and wind forcing. The second scenario occurred during persistently southwesterly winds. The anticyclonic gyre over the shoal vanished suggesting that wind forcing dominated the tidal rectification mechanism over the shoal, while gravitational circulation and wind forcing continued to cause the flows in the channels. In both scenarios, most of the volume exchange took place in the channels.  相似文献   

20.
The transport of the Antarctic Circumpolar Current (ACC) is influenced by a variety of processes and parameters. A proper implementation of basin geometry, ocean topography and baroclinicity is known to be a fundamental requisite for a realistic simulation of the circulation and transport. Other, more subtle parameters are those of eddy-induced transports and diapycnal mixing of thermohaline tracers or buoyancy, either treated by eddy resolution or by a proper parameterization. Quite a number of realistic numerical simulations of the circulation in the Southern Ocean have recently been published. Many concepts on relations of the ACC transport to model parameters and forcing function are in discussion, however, without much generality and little success. We present a series of numerical simulations of circumpolar flow with a simplified numerical model, ranging from flat-bottom wind-driven flow to baroclinic flow with realistic topography and wind and buoyancy forcing. Analysis of the balances of momentum, vorticity, and baroclinic potential energy enables us to develop a new transport theory, which combines the most important mechanisms driving the circulation of the ACC and determining its zonal transport. The theory is based on the importance of the bottom vertical velocity in generating vorticity and shaping the baroclinic potential energy of the ACC. It explains the breaking of the -constraint by baroclinicity and brings together in one equation the wind and buoyancy forcing of the current. The theory emphasizes the role of Ekman pumping and eddy diffusion of buoyancy to determine the transport. It also demonstrates that eddy viscosity effects are irrelevant in the barotropic vorticity balance and that friction arises via eddy diffusion of density. In this regime, the classical Stommel model of vorticity balance is revived where the bottom friction coefficient is replaced by (with the Gent–McWilliams coefficient and the baroclinic Rossby radius ) and a modified wind curl forcing appears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号