首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts   总被引:1,自引:0,他引:1  
The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave “patches”, unlike those reported previously, were observed with very short durations (about 300ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.  相似文献   

2.
The Astrophysics Directorate of CONIDA has installed two radio spectrometer stations belonging to the e-CALLISTO network in Lima, Peru. Given their strategic location near the Equator, it is possible to observe the Sun evenly throughout the whole year. The receiver located at Pucusana, nearby the capital city of Lima, took data from October 2014 until August 2016 in the metric and decimetric bands looking for radio bursts. During this period, this e-CALLISTO detector was unique in its time-zone coverage. To asses the suitability of the sites and the performance of the antennas, we analyzed the radio ambient background and measured their radiation pattern and beamwidth. To demonstrate the capabilities of the facilities for studying solar dynamics in these radio frequencies, we have selected and analyzed type Ⅲ Solar Radio Bursts. The study of this kind of burst helps to understand the electron beams traversing the solar corona and the solar atmospheric density. We have characterized the most common radio bursts with the following mean values: a negative drift rate of –25.8 ± 3.7 MHz s~(-1), a duration of 2.6 ± 0.3 s and 35 MHz bandwidth in the frequency range of 114 to 174 MHz. In addition, for some events, it was possible to calculate a global frequency drift which on average was 0.4 ± 0.1 MHz s~(-1).  相似文献   

3.
We present a statistical study of decimetric type Ⅲ radio bursts,coronal mass ejections(CMEs),and Hα flares observed in the period from July 2000 to March2005.In total,we investigated 395 decimetric type Ⅲ radio burst events,21% of which showed apparent correlation to CMEs that were associated with Hα flares.We noticed that the Hα flares which were strongly associated with CMEs were gradual events,and82% of them took place before CMEs appeared in the field of view of LASCO C2;that most of the CME-associated radio bursts started in the frequency range around750 MHz with a frequency drifting rate of several hundred MHz s-1,of which both positive and negative ones were recognized; and that the correlation of type Ⅲ radio bursts to CMEs without associated flares is fairly vague,less than 9%.  相似文献   

4.
We report about observations of solar U+Ⅲ bursts on 2020 June 5 by means of a new active antenna designed to receive radiation in 4–70 MHz. This instrument can serve as a prototype of the ultralong-wavelength radio telescope for observations on the farside of the Moon. Our analysis of experimental data is based on simultaneous records obtained with the antenna arrays GURT and NDA in high frequency and time resolution, e-Callisto network as well as by using the space-based observatories STEREO and WIND. The results from this observational study confirm the model of Reid and Kontar.  相似文献   

5.
Seventy-one occurrences of coronal mass ejections(CMEs) associated with radio bursts,seemingly associated with type Ⅲ bursts/fine structures(FSs),in the centimeter-metric frequency range during 2003-2005,were obtained with the spectrometers at the National Astronomical Observatories,Chinese Academy of Sciences(NAOC) and the Culgoora radio spectrometer and are presented.The statistical results of 68 out of 71 events associated with the radio type III bursts or FSs during the initiation or early stages of the...  相似文献   

6.
The extremely low frequency( f < 40 MHz) is a very important frequency band for modern radio astronomy observations. It is also a key frequency band for solar radio bursts, planetary radio bursts, fast radio bursts detected in the lunar space electromagnetic environment, and the Earth’s middle and upper atmosphere with low dispersion values. In this frequency band, the solar stellar activity, the early state of the universe, and the radiation characteristics of the planetary magnetosphere and...  相似文献   

7.
We investigated 64 pairs of interacting-CME events identified from simultaneous observations by the SOHO and STEREO spacecraft from January 2010 to August 2014, to examine the relationship between large SEP events in the energy range of ~25 to~60 MeV and properties of the interacting CMEs.We found that during CME interactions, the large SEP events in this study were all generated by CMEs with the presence of enhanced type Ⅱ radio bursts, which also have wider longitudinal distributions compared to events without a type Ⅱ radio burst or its enhancement(almost always associated with small SEP events).It seems that the signature of type Ⅱ radio burst enhancement is a good discriminator between large SEP and small or no SEP event producers during CME interactions. The type Ⅱ radio burst enhancement is more likely to be generated by CME interactions, with the main CME having a larger speed(v), angular width(WD), mass(m) and kinetic energy(Ek), and taking over the preceding CMEs. The preceding CMEs in these instances have higher v, WD, m and Ekthan those in CME pairs missing type Ⅱ radio bursts or enhancements. Generally, the values of these properties in the type-Ⅱ-enhanced events are typically higher than the corresponding non-type-Ⅱ or non-type-Ⅱ-enhanced cases for both the main and preceding CMEs. Our analysis also revealed that the intensities of associated SEP events correlate negatively with the intersection height of the two CMEs. Moreover, the overlap width of two CMEs is typically larger in type-Ⅱ-enhanced events than in non-type-Ⅱ or non-type-Ⅱ-enhanced events. Most type-Ⅱ-enhanced events and SEP events are coincident and are almost always made by the fast and wide main CMEs that sweep fully over relatively slower and narrower preceding CMEs. We suggest that a fast CME with enough energy completely overtaking a relatively narrower preceding CME, especially at low height, can drive a more energetic shock signified by the enhanced type Ⅱ radio bursts. The shock may accelerate ambient particles(likely provided by the preceding CME) and lead to large SEP events more easily.  相似文献   

8.
Ellerman bombs(EBs) are tiny brightenings often observed near sunspots.The most impressive characteristic of EB spectra is the two emission bumps in both wings of the Hα and Ca II 8542 ?A lines. High-resolution spectral data of three small EBs were obtained on 2013 June 6 with the largest solar telescope, the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. The characteristics of these EBs are analyzed. The sizes of the EBs are in the range of 0.3′′- 0.8′′ and their durations are only 3–5 min. Our semi-empirical atmospheric models indicate that the heating occurs around the temperature minimum region with a temperature increase of 2700–3000 K, which is surprisingly higher than previously thought. The radiative and kinetic energies are estimated to be as high as 5 × 1025- 3.0 × 1026 erg despite the small size of these EBs. Observations of the magnetic field show that the EBs just appeared in a parasitic region with mixed polarities and were accompanied by mass motions.Nonlinear force-free field extrapolation reveals that the three EBs are connected with a series of magnetic field lines associated with bald patches, which strongly implies that these EBs should be produced by magnetic reconnection in the solar lower atmosphere. According to the lightcurves and the estimated magnetic reconnection rate,we propose that there is a three phase process in EBs: pre-heating, flaring and cooling phases.  相似文献   

9.
In the physics of solar flares, it is crucial to diagnose the physical conditions near the flare energyrelease sites. However, so far it is unclear how to diagnose these physical conditions. A solar microwave type Ⅲ burst is believed to be a sensitive signature of primary energy release and electron accelerations in solar flares. This work takes into account the effect of the magnetic field on the plasma density and develops a set of formulas which can be used to estimate the plasma density, temperature, magnetic field near the magnetic reconnection site and particle acceleration region, and the velocity and energy of electron beams.We apply these formulas to three groups of microwave type Ⅲ pairs in an X-class flare, and obtained some reasonable and interesting results. This method can be applied to other microwave type Ⅲ bursts to diagnose the physical conditions of source regions, and provide some basic information to understand the intrinsic nature and fundamental processes occurring near the flare energy-release sites.  相似文献   

10.
We introduce two methods to detect short-period variation in solar activity.These are called amplitude of low frequency fluctuation(ALFF) and fractional amplitude of low frequency fluctuation(FALFF). We find a positive correlation between short-period variation and 11-year variation of solar activity using these two methods.Through ALFF,we find that solar activity over a short period becomes intensive when the 11-year solar activity is intensive. The ALFF value of the short period activity varies with the peak in sunspot number as a quadratic function. Through FALFF we find that the ratio of short-period spectral intensity to intensity over the whole period of solar activity will increase when the 11-year period of solar activity is intensive.The short-period FALFF value varies with the peak in sunspot number according to a cubic function. Using ALFF,we obtain a yearly series of solar activity that varies over a short period of 1–5 yr from 1860 to 2003,which shows an obvious periodicity of about 22 yr,33 yr,11 yr and a century. These short period variations show good correlations with long term variations in solar activity.  相似文献   

11.
The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures(ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs(the double plasma resonance(DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example,the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources.  相似文献   

12.
Two impulsive microwave bursts observed by Owens-Valley Solar Arrays (OVSA)are studied.The fast time variation of the turnover frequency in these bursts is quite different from the constant value in the earlier conclusion.The observational turnover frequencies are consistent with the calculations using the non-thermal gyro- synchrotron radiation model.We find the turnover frequency may play an important role for calculating the coronal magnetic field on the basis of Dulk and Marsh's ap- proximations.  相似文献   

13.
In this paper, the new models of the generation mechanism of the observed solar corona type II radio burst and the interplanetary type III radio emission are presented. The synchrotron-maser theory of type II solar is proposed. The electrostatic waves with frequencies close to twice the plasma frequency can be excited,and can naturclly change into electromagnetic waves when they propagate in a plasma in which the plasma density decreases spatially.Emission of electromagnetic waves with frequencies close to the plasma frequency and/or its second harmonic have been frequently observed in solar corona and interplanetary space. In the pass a number of theories have been suggested to explain the generation mechanism of the observed radiation.  相似文献   

14.
The measurement of positions and sizes of radio sources in observations is important for understanding of the flare evolution. For the first time, solar radio spectral fine structures in an M6.5 flare that occurred on 2013 April 11 were observed simultaneously by several radio instruments at four different observatories: Chinese Solar Broadband Radio Spectrometer at Huairou(SBRS/Huairou), Ondˇrejov Radio Spectrograph in the Czech Republic(ORSC/Ondˇrejov), Badary Broadband Microwave Spectropolarimeter(BMS/Irkutsk), and spectrograph/IZMIRAN(Moscow, Troitsk). The fine structures included microwave zebra patterns(ZPs), fast pulsations and fiber bursts. They were observed during the flare brightening located at the tops of a loop arcade as shown in images taken by the extreme ultraviolet(EUV) telescope onboard NASA's satellite Solar Dynamics Observatory(SDO). The flare occurred at 06:58–07:26 UT in solar active region NOAA 11719 located close to the solar disk center. ZPs appeared near high frequency boundaries of the pulsations, and their spectra observed in Huairou and Ondˇrejov agreed with each other in terms of details. At the beginning of the flare's impulsive phase, a strong narrowband ZP burst occurred with a moderate left-handed circular polarization. Then a series of pulsations and ZPs were observed in almost unpolarized emission. After 07:00 UT a ZP appeared with a moderate right-handed polarization.In the flare decay phase(at about 07:25 UT), ZPs and fiber bursts become strongly right-hand polarized.BMS/Irkutsk spectral observations indicated that the background emission showed a left-handed circular polarization(similar to SBRS/Huairou spectra around 3 GHz). However, the fine structure appeared in the right-handed polarization. The dynamics of the polarization was associated with the motion of the flare exciter, which was observed in EUV images at 171 ?A and 131 ?A by the SDO Atmospheric Imaging Assembly(AIA). Combining magnetograms observed by the SDO Helioseismic and Magnetic Imager(HMI) with the homologous assumption of EUV flare brightenings and ZP bursts, we deduced that the observed ZPs correspond to the ordinary radio emission mode. However, future analysis needs to verify the assumption that zebra radio sources are really related to a closed magnetic loop, and are located at lower heights in the solar atmosphere than the source of pulsations.  相似文献   

15.
We present the estimation of solar observation with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). For both the quiet Sun and the Sun with radio bursts, when pointing directly to the Sun, the total power received by FAST would be out of the safe operational range of the signal chain, even resulting in damage to the receiver. As a conclusion, the Sun should be kept at least ~2° away from the main beam during observations at~1.25 GHz. The separation for lower frequency should be ...  相似文献   

16.
This paper presents the generation of kinetic Alfv én wave(KAW) coherent structures of magnetic filaments applicable to solar wind at 1 AU, when the background plasma density is modified by parallel ponderomotive force and Joule heating. The inhomogeneity in the magnetic field, which was included as a perturbation in the transverse direction of the magnetic field, takes energy from the main pump KAWs and generates the filamentary structures. When the intensity is high enough, the filaments are broken down and the energy initially confined to low wavenumbers is redistributed to higher wavenumbers, leading to cascades of energy at small scales less than the ion acoustic gyroradius or comparable to electron gyroradius.The magnetic field spectral profile is generated from the numerical simulation results, and its dependence on different directions of the wavevector and initial conditions of the simulation representing the transverse magnetic field inhomogeneity is studied. The relevance of these results with other spacecraft observations and measurements is also pointed out.  相似文献   

17.
Solar type Ⅲ radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type Ⅲ bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type Ⅲ radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

18.
We present a new sub-class of type Ⅲ solar radio burst at the high frequencies around 6.0 GHz. In addition to a descending and an ascending branch on the dynamic spectrum, it has an inverted morphology different from the simpletype U-burst. We call it “partial N-burst“ because it is interpreted as the known N-burst minus its first branch. The partial N-burst presented here was detected among a reverse slope type Ⅲ (RS-Ⅲ) burst group prior to the type V solar radio continuum and was simultaneously recorded by two spectrometers at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, 5.20-7.60 GHz) and at Purple Mountain Observatory (PMO, 4.50-7.50 GHz) on 1999 August 25.After the N-burst and M-burst, the partial N-burst is a third piece of evidence for a magnetic mirror effect in solar radio observation, when the same electron is reflected at a pinched foot of a flare loop.  相似文献   

19.
A large ground-based optical/infrared telescope is being planned for a world-class astronomical site in China.The cloud-free night percentage is the primary meteorological consideration for evaluating candidate sites.The data from GMS and NOAA satellites and the MODIS instrument were utilized in this research,covering the period from 1996 to 2015.Our data analysis benefits from overlapping results from different independent teams as well as a uniform analysis of selected sites using GMS+NOAA data.Although significant ground-based monitoring is needed to validate these findings,we identify three different geographical regions with a high percentage of cloud-free conditions(~83% on average),which is slightly lower than at Mauna Kea and Cerro Armazones(~85% on average) and were chosen for the large international projects TMT and ELT respectively.Our study finds evidence that cloud distributions and the seasonal changes affected by the prevailing westerly winds and summer monsoons reduce the cloud cover in areas influenced by the westerlies.This is consistent with the expectations from climate change models and is suggestive that most of the identified sites will have reduced cloud cover in the future.  相似文献   

20.
The Chinese Spectral Radio Heliograph(CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas,which are grouped into two antenna arrays(CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4–2 GHz and that for CSRH-II is 2–15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 d Bi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2–1.6 GHz on 2010 November12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source.Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号