首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An experiment is described showing that an optical scintillation instrument gives reliable values of heat and momentum fluxes in the surface layer, subject to the usual restrictions of homogeneity and steady state. This instrument measures the turbulence inner scale and refractive-index structure parameter, which are used to obtain the fluxes from Monin-Obukhov similarity relationships. The instrument gives space-averaged values over a propagation path that can range in length from tens to hundreds of meters. The history of the use of optical propagation to estimate fluxes is reviewed.  相似文献   

2.
Observations of surface-layer turbulence and turbulent fluxes were made over a desert in northwestern China as a part of HEIFE (HEIhe river Field Experiment). These show that the normalized variations of the vertical wind component and of the air temperature obey Monin-Obukhov similarity well, especially in free convective conditions. However, the variations of specific humidity do not obey Monin-Obukhov similarity.Mean bulk transfer coefficients of sensible heat and momentum flux are obtained as functions of stability over a wide stability range from the observed data of turbulent fluxes and mast profiles. However, the bulk transfer coefficient for water vapor could not be obtained because of the large scatter of the data. In free convective conditions, the sensible heat flux was found to be approximately proportional to the 1.4 power of temperature difference between the surface and 20m. The bulk transfer coefficient of sensible heat is also obtained as a function of the bulk Richardson number for practical convenience.  相似文献   

3.
A one-dimensional numerical model based on the equations of mean motion and turbulent kinetic energy (TKE), with Delage's (1974) mixing-length parameterization has been used to simulate the mean and turbulent structure of the evolving stably stratified nocturnal boundary layer (NBL). The model also includes a predictive equation for the surface temperature and longwave radiational cooling effects.In the absence of advective and gravity wave effects, it is found that the model-simulated structure, after a few hours of evolution, could be ordered fairly well by a similarity scaling (u *0, *0, L 0, and h) based on surface fluxes and the NBL height. Simple expressions are suggested to describe the normalized profiles of momentum and heat fluxes, TKE, eddy-viscosity and energy dissipation. A good ordering of the same variables is also achieved by a local scaling (u *0, * and L) based on the height-dependent local fluxes. The normalized TKE, eddy viscosity and energy dissipation are unique functions of z/L and approach constant values as z/L , where L is the local Monin-Obukhov length. These constants are close to the values predicted for the surface layer as z/L , thus suggesting that the Monin-Obukhov similarity theory can be extended to the whole NBL, by using the local (height-dependent) scales in place of surface-layer scales. The observed NBL structure has been shown to follow local similarity (Nieuwstadt, 1984).  相似文献   

4.
We present eddy-correlation measurements of heat and water vapour fluxes made during the Antarctic winter. The surface layer was stably stratified throughout the period of observation and sensible heat fluxes were always directed downwards. However, both upward and downward water vapour fluxes were observed. Their magnitude was generally small and the latent heat flux was not a significant fraction of the surface energy budget. The variation of heat and water vapour fluxes with stability is well described by Monin-Obukhov similarity theory but the scalar roughness lengths for heat and water vapour appear to be much larger than the momentum roughness length. Possible explanations of this effect are discussed.  相似文献   

5.
Summary Eddy correlation techniques to determine the turbulent fluxes of heat, moisture and momentum in the near-surface atmospheric layer rely on the Monin-Obukhov similarity theory, which requires stationarity and horizontal homogeneity. Experiments at specially selected sites over land and particularly over sea are used to develop this concept. Recent experiments, deliberately conducted in non-ideal conditions, show an underestimation of turbulent fluxes. Results from the field experiments FIFE, KUREX, TARTEX and SADE, point to a relationship between the underestimation of turbulent fluxes and terrain inhomogeneity. In order to systematically correct for this effect a scheme is suggested which uses fetch lengths of different types of surface in the sites surrounding the environment. In addition, horizontal differences in atmospheric stability above different surfaces are included in the correction scheme. This scheme might be useful for the design of validation experiments in non-homogeneous terrain. Received April 9, 1997 Revised July 16, 1997  相似文献   

6.
A study of the surface energy balance with turbulent fluxes obtained by the Monin-Obukhov similarity theory and a comparison with results for resistance laws are presented for the strong baroclinic conditions in the vicinity of the Filchner/Ronne Ice Shelf front. The data are taken from a field experiment in the Antarctic summer season 1983/84. For the first time in the coastal Antarctic region, this data set comprises synchronous energy balance measurements over the polynya and the ice shelf together with soundings of the boundary layer, yielding vertical profiles of the wind velocity and temperature over the ice shelf, at the ice shelf front and over the polynya.Over the ice shelf, the radiation balance is the largest component of the energy fluxes and is mainly compensated by the subsurface energy flux and the turbulent heat flux in the daily mean. Over the polynya, turbulent fluxes of sensible and latent heat lead to large energy losses of the water surface in the night-time and in situations of very low air temperatures.Different parameterizations for boundary-layer height are compared using tethered sonde and energy balance measurements. With the height of the inversion base over the polynya and the height of the critical bulk Richardson number over the ice shelf, external parameters for the application of resistance laws were determined. The comparison of turbulent surface fluxes obtained by the energy balance measurements and by the resistance laws shows good agreement for the convective conditions over the polynya. For the stably stratified boundary layer over the ice shelf with small amounts of the turbulent heat flux, the deviation is large for the case of a cold air outflow with a superposed inertial oscillation.  相似文献   

7.
Two techniques are described by which the flux of water vapor can be derived from concentration measurements made by a Raman-Lidar. Monin-Obukhov similarity theory and dissipation techniques are used as the basis for these methods. The resulting fluxes are compared to fluxes from standard point instruments. The techniques described are appropriate for measuring the flux of any scalar quantity using Lidar measurements in the inner region of the boundary layer.  相似文献   

8.
Based on the micrometeorological measurements at a heterogeneous farmland in South China, this work detects the effects of vegetative heterogeneity and patch-scale harvest on the energy balance closure and turbulent fluxes. As a quality control, the integral turbulent characteristics are analyzed in the framework of Monin-Obukhov similarity theory. Spatial representativeness of the measurements is studied in terms of footprint and source area. Firstly, in two wind sectors, the nondimensional standard deviations of turbulent quantities generally agree with some foregoing studies. Discrepancies exist in the other sectors due to the instrument-induced flow distortion. Secondly, energy balance closure is examined with two types of linear regression, which confirms that mismatching source areas between the available energy and turbulent fluxes have no preference to either energy “deficit” or “surplus”. Thirdly, turbulent fluxes exhibit greater variability when they represent smaller source areas. The patch-scale harvest adjacent to the flux mast causes notable increase and decrease in the sensible heat and latent heat fluxes, respectively, while the CO2 exchange almost vanishes after the harvest. Interestingly, energy balance closure is less influenced despite the notable effects on the turbulent fluxes and Bowen ratio, implying that the energy balance closure check may mask some variability in the turbulent fluxes. Thus, to adjust the heat fluxes with a single “closure factor” for a perfect closure is dangerous at a patchy site.  相似文献   

9.
A Simple Method of Estimating Scalar Fluxes Over Forests   总被引:1,自引:0,他引:1  
A simple aerodynamic-variance method is proposed to fill gaps in continuous CO2 flux measurements in rainy conditions, when open-path analysers do not function. The method requires turbulent conditions (friction velocity greater than 0.1 ms–1), and uses measurements of mean wind speed, and standard deviations of temperature and CO2 concentration fluctuations to complement, and at times replace, eddy-covariance measurements of friction velocity, sensible heat flux and CO2 flux. Friction velocity is estimated from the mean wind speed with a flux-gradient relationship modified for the roughness sublayer. Since normalised standard deviations do not follow Monin-Obukhov similarity theory in the roughness sublayer, a simple classification scheme according to the scalar turbulence scale was used. This scheme is shown to produce sensible heat and CO2 flux estimates that are well correlated with the measured values.  相似文献   

10.
Inertial dissipation methods are based on measurements of the structure parameters of momentum, temperature and humidity. The most serious problems arise when experimental errors and uncertainties in the meteorological constants produce uncertainties in the calculated fluxes.In order to design an experimental layout to use an optical technique to measure fluxes, we need to perform an accurate error analysis. A Monte Carlo analysis is presented here to simulate the results and to analyze the propagation of statistical errors affecting the measurements. Results show that the coupling of inertial dissipation methods with optical methods is promising and a field experiment, based on the joint techniques, is feasible.This work was partially supported by M.P.I. (60%) grants of the Italian Ministry of Education.  相似文献   

11.
Summary ?Simultaneous flight measurements with the research aircraft Do 128 and the helicopter-borne turbulence probe Helipod were performed on 18 June 1998 during the LITFASS-98 field experiment. The area-averaged turbulent vertical fluxes of momentum, sensible, and latent heat were determined on a 15 km × 15 km and a 10 km × 10 km flight pattern, respectively. The flights were carried out over heterogeneous terrain at different altitudes within a moderately convective boundary layer with Cumulus clouds. Co-spectra-analysis demonstrated that the small scale turbulent transport was completely sampled, while the comparatively small flight patterns were possibly of critical size regarding the large-scale turbulence. The phygoide of the airplane was identified as a significant peak in some co-spectra. The turbulent fluxes of momentum and sensible heat at 80 m above the ground showed systematic dependence on the location of the flight legs above the heterogeneous terrain. This was not observed for the latent heat flux, probably due to the vertical distribution of humidity in the boundary layer. Statistical error analysis of the fluxes F showed that the systematic statistical error ΔF was one order of magnitude smaller than the standard deviation σ F . The difference between area-averaged fluxes derived from simultaneous Helipod and Do 128 measurements was much smaller than σ F , indicating that the systematic statistical error was possibly over-estimated by the usual method. In the upper half of the boundary layer the airborne-measured sensible heat flux agreed well with windprofiler/RASS data. A linear fit was the best approximation for the height dependence of all three fluxes. The linear extrapolations of the latent and sensible heat fluxes to the ground were in good agreement with tower, scintillometer, and averaged ground-station measurements on various surface types. Systematic discrepancies between airborne and ground-based measurements were not found. Received June 18, 2001; revised December 21, 2001; accepted June 3, 2002  相似文献   

12.
This case study introduces measurements of turbulent fluxes in a nocturnal boundary layer in North Germany with the new helicopter-borne turbulence measurement system HELIPOD, a detailed data analysis and examination in regard of systematic errors of the instrument, and some comparison with local similarity theory and experiments of the past, in order to confirm the occurrence of small vertical turbulent fluxes. The examined nocturnal boundary layer offered excellent conditions to analyse the quality of the measurement system. In this connection, a detailed look at a strong ground-based inversion disclosed small turbulent fluxes with a spectral maximum at ten metres wavelength or less, embedded in intermittent turbulence. For verification of these fluxes, the measurements were compared with well established results from past experiments. Local similarity theory was applied to calculate dimensionless variances of the turbulent quantities, which were found in good agreement with other observations. Since shear and stratification varied significantly on the horizontal flight legs due to global intermittency, a method was developed to determine vertical gradients on a horizontal flight pattern, by use of small fluctuations of the measurement height. With these locally determined gradients, gradient transport theory became applicable and the turbulent diffusivities for heat and momentum, the Richardson number, and the flux Richardson number were estimated within isolated strong turbulent outbursts. Within these outbursts the flux Richardson number was found between 0.1 and 0.2. The functional relationship between the gradient Richardson number and the turbulent Prandtl number agreed well with observations in past experiments and large eddy simulation. The impact of the stratification on the vertical turbulent exchange, as already described for the surface layer using Monin–Obukhov similarity, was analogously observed in the very stably stratified bulk flow when local scaling was applied.  相似文献   

13.
Aircraft turbulence data from the Autonomous Ocean Sampling Network project were analyzed and compared to the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parametrization of turbulent fluxes in an ocean area near the coast of California characterized by complex atmospheric flow. Turbulent fluxes measured at about 35 m above the sea surface using the eddy-correlation method were lower than bulk estimates under unstable and stable atmospheric stratification for all but light winds. Neutral turbulent transfer coefficients were used in this comparison because they remove the effects of mean atmospheric conditions and atmospheric stability. Spectral analysis suggested that kilometre-scale longitudinal rolls affect significantly turbulence measurements even near the sea surface, depending on sampling direction. Cross-wind sampling tended to capture all the available turbulent energy. Vertical soundings showed low boundary-layer depths and high flux divergence near the sea surface in the case of sensible heat flux but minimal flux divergence for the momentum flux. Cross-wind sampling and flux divergence were found to explain most of the observed discrepancies between the measured and bulk flux estimates. At low wind speeds the drag coefficient determined with eddy correlation and an inertial dissipation method after corrections were applied still showed high values compared to bulk estimates. This discrepancy correlated with the dominance of sea swell, which was a usually observed condition under low wind speeds. Under stable atmospheric conditions measured sensible heat fluxes, which usually have low values over the ocean, were possibly affected by measurement errors and deviated significantly from bulk estimates.  相似文献   

14.
15.
The impact of the Wangara experiment   总被引:1,自引:0,他引:1  
  相似文献   

16.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

17.
In order to provide high quality data for climate change studies, the data quality of turbulent flux measurements at the station of SACOL (Semi-Arid Climate & Environment Observatory of Lanzhou University), which is located on a semi-arid grassland over the Loess Plateau in China, has been analyzed in detail. The effects of different procedures of the flux corrections on CO2, momentum, and latent and sensible heat fluxes were assessed. The result showed that coordinate rotation has a great influence on the momentum flux but little on scalar fluxes. For coordinate rotation using the planar fit method, different regression planes should be determined for different wind direction sectors due to the heterogeneous nature of the ground surface. Sonic temperature correction decreased the sensible heat flux by about 9%, while WPL correction (correction for density fluctuations) increased the latent heat flux by about 10%. WPL correction is also particularly important for CO2 fluxes. Other procedures of flux corrections, such as the time delay correction and frequency response correction, do not significantly influence the turbulent fluxes. Furthermore, quality tests on stationarity and turbulence development conditions were discussed. Parameterizations of integral turbulent characteristics (ITC) were tested and a specific parameterization scheme was provided for SACOL. The ITC test on turbulence development conditions was suggested to be applied only for the vertical velocity. The combined results of the quality tests showed that about 62%–65% of the total data were of high quality for the latent heat flux and CO2 flux, and as much as about 76% for the sensible heat flux. For the momentum flux, however, only about 35% of the data were of high quality.  相似文献   

18.
The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat (Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas ("footprint") of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%-30% in terms of the influence of input parameters and the non-dimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a "micro-α scale"), depending on local meteorological conditions.  相似文献   

19.
Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10−4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10−3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.  相似文献   

20.
Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2 fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal-to-noise ratio can be used for flux estimations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号