首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The instability of oscillatory flows in a two-layer fluid where the two layers differ in density and viscosity has been analysed using a perturbation method for long waves with special interest on effects of viscosity, time scale, density and depth of the fluid. The flow of a fluid with homogeneous density can be unstable, when the kinematic viscosity of the upper fluid layer is different from that of the lower one. Viscosity stratification results in unstable oscillatory flows. Two limiting cases of single-layer flow are also considered.  相似文献   

2.
In the approximation of the three-layer ocean model, this article considers the interaction of a singular free eddy moving in the upper layer with a topographic eddy formed over an isolated submarine elevation. This interaction leads to the complex, including chaotic, behavior of fluid particles contained in these eddies. This article presents examples of various scenarios of the dynamics of these particles. The execution of a particular scenario depends on the model parameters (the intensity of the eddies, their position, and the thickness and density of the layers). In the case of the short-term impact of the free eddy on the eddy atmosphere of the topographic eddy, the strong effect of ventilation of this area is shown. It is also presented that stratification significantly regularizes the dynamics of the system in the lower layers compared with the top ones.  相似文献   

3.
赵宇蒙  温鸿杰  任冰  王超 《海洋工程》2021,39(4):134-143
基于光滑粒子流体动力学(SPH)方法,开发了能够准确描述水流作用下圆柱强迫振动特性的数学模型。通过引入适合于无网格粒子法的开边界算法,来模拟出入流边界条件,建立了具有造流功能的SPH数值水槽。圆柱及计算域的上下边界均采用修正的动力边界条件进行模拟。借助于粒子位移矫正和压力修正算法,避免了圆柱周围流体粒子压力大幅震荡以及结构下游区域出现空腔等非物理性现象。使用典型的圆柱绕流数据,验证了所建SPH模型的计算性能,研究了固定圆柱在低雷诺数情况下的尾涡脱落模式和升阻力变化规律。明确了低雷诺数下强迫振动圆柱在频率锁定以及非锁定区间内的升力变化规律,量化了升力与外界激励频率之间的关系。  相似文献   

4.
A two-layer nonviscous model of chaotic advection in a unidirectional pulsating running current above a delta-shaped underwater elevation is considered. The property of local stability is used and a characteristic similar to the cumulative Lyapunov exponent is introduced that makes it possible to determine the range of regular and chaotic particle behavior. The estimates obtained using this characteristic are for clarifying passive admixture transport in analog model problems. Knowledge of the maximum chaotization region boundary is important for oceanology in view of interpreting point vortices as a model of distributed vortices. The criterion based on using the cubic Hamiltonian approximation for a nonlinear resonance model is introduced to estimate the limiting boundary of the regular region.  相似文献   

5.
This paper presents the results of numerical calculations using shallow water equations for the currents in the laboratory experiments with a rotating circular channel. An axial symmetric function of mass source is introduced into the equations for the depth of the layer to model experimental sources and sinks of fluid, which induces opposing zonal flows together with the Coriolis force. Different configurations and amplitudes of mass sources lead to the appearance of vortex motions in the channel with different circular motions in the vortices and azimuthal displacements of their centers along the channel. Diagrams of regimes are presented in the parameters of relative angular velocities of the mean zonal flow and vortex transport around the axis of the system rotation. The differences of the theory and real experiments with currents of finite depth in a channel are discussed.  相似文献   

6.
This paper presents a numerical model for simulating wave interaction with porous structures. Incompressible smoothed particle hydrodynamics in porous media (ISPHP) method is introduced in this study as a mesh free particle approach that is capable of efficiently tracking the large deformation of free surfaces in a Lagrangian coordinate system. The developed model solves two porous and pure fluid flows simultaneously by means of one equation that is equivalent to the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the extended Forchheimer equation for the flows inside the porous media. Interface boundary between pure fluid and porous media is effectively modeled by the SPH integration technique. A two-step semi-implicit scheme is also used to solve the fluid pressure satisfying the fluid incompressibility criterion.The developed ISPHP model is then validated via different experimental and numerical data. Fluid flow pattern through porous dam with different porosities is studied and regular wave attenuation over porous seabed is investigated. As a practical case, wave running up and overtopping on a caisson breakwater protected by a porous armor layer are modeled. The results show good agreements between numerical and laboratory data in terms of free surface displacement, overtopping rate and pressure distribution. Based on this study, ISPHP model is an efficient method for simulating the coastal applications with porous structures.  相似文献   

7.
NG  Chiu-on  FU  Sau-chung  BAI  Yu-chuan 《中国海洋工程》2002,16(4):423-436
The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow lluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numeri-cally. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i. e. , oppo-site to wave propagation) for a certain range of yield stress.  相似文献   

8.
Laboratory experiments with a rotating tank confirm the bifurcation character of a barotropic flow driven by an inflow and an outflow described by Sakai (1986). The model, a circular basin with a topographic β-effect, simulates a mid-latitude oceanic feature. At a low Rossby number, stationary Rossby waves are observed which are symmetrical with a line connecting the inlet and the outlet. As the Rossby number increases, a bifurcation occurs and two kinds of vortex flows are observed. In the vortex, potential vorticity is almost uniform. In addition to the two vortex flows, a jet-like inertial flow can also be observed. In general, thre results of these experiments agree well with those of a low-order model and a numerical model.  相似文献   

9.
在流体力学中,描述流体运动有Lagrange方法和Euler方法.Euler方法是通过观测通过空间各固定位置点处流体质点的运动行为来描述流体运动规律,而Lagrange方法是跟踪各个流体质点,通过观测它们在时空运动中所走过的路径来描述流体的运动规律.在数学处理上,Euler方法较Lagrange方法简单,但Lagrange方法可以完全描述流体运动的整个流场的所有特性,而Euler方法却无法描述每个流体质点的运动轨迹.本文,我们研究具有刚性边界的三层流体系统中的界面内波,其中上层流体的密度比下层流体的密度大.通过在界面处引入朗格朗日匹配条件并使用微扰法得到了拉格朗日描述下的界面内波的一阶解、二阶解及三阶解,给出了质量输运速度、波频率、平均水平和质点运动轨迹的解.结果表明对于质量输运速度、波频率、平均水平和质点运动轨迹在界面处会有不连续性,但是我们发现在满足一定的三层流体水深比和密度比条件时这种不连续性将会消失.  相似文献   

10.
Variations of the western boundary currents induced by a periodic change in wind stress are studied in a two-layer model with a continental slope along the western boundary. The variation of the total transport of the western boundary current over the continental slope shows a considerable phase lag with the wind stress and a decrease in amplitude compared with for the flat bottom ocean, though the interior barotropic response is to adjust almost instantaneously to the wind stress. The total transport variation of the western boundary current is well approximated by the upper layer transport variation. That is, almost complete separation of the upper- and lower-layer flows takes place over the slope, and only the upper layer flow contributes to the change in total transport of the western boundary current. Contributions of the interior barotropic and baroclinic responses to the upper layer transport variation depend on the forcing period. With decrease in the forcing period, the barotropic response becomes relatively important for determining the upper layer transport variation although the amplitude of the variation is smaller.  相似文献   

11.
A numerical model, coupling an analysis of beach groundwater flow with an analysis of swash wave motion over a uniform slope, is presented. Model calculations are performed to investigate the variations of swash-induced filtration flows across the beach face for different input parameters. Swash zone sediment transport under the influence of such filtration flow across the beach face is investigated through modification of effective weight of sediment particle and modification of swash boundary layer thickness. These effects are quantified based on a bed load transport model with a modified Shields parameter.  相似文献   

12.
Cyclone-anticyclone asymmetry in a rotating fluid results in vortices with cyclonic rotation being attenuated more rapidly than vortices with anticyclonic rotation due to the Ekman bottom friction. To explain this effect, some authors invoked rather complex integral (averaged along the vertical) models with the parametrization of nonlinear friction. A simple analytical model, free of the procedure of formal averaging and based on a separate consideration of the equations for external flow in the nonviscous region and internal flow in the boundary layer, is investigated in this work. The corresponding equations are written in the so-called geostrophic momentum approximation, which makes it possible to take into account the nonlinear advective mass transport in the boundary layer at small Rossby numbers. The nonlinear equation of the hyperbolic type for the tangential velocity, which describes the process of attenuation of an axisymmetric vortex, is obtained from the condition of total mass conservation. Based on the solutions to this equation, it was shown that distinctions in the character of vortex attenuation are caused by deviations from the geostrophic regime in the nonviscous region. It was established that the concentration (compression) of anticyclonic vortices and the extension of cyclonic ones take place in the process of attenuation.  相似文献   

13.
运用 Mc Creary和 Yu(1992 )的非线性 2 12 层模式的积分流场 ,研究了混沌混合与输运对海水及要素浓度的输运和混合问题。模式结果显示混沌混合区主要分布于赤道东太平洋不稳定区及东、西边界附近 ,中西太平洋的大部分区域为非混沌区。释放在混沌区内的示踪团随时间的弥散过程要较非混沌区内的示踪团复杂的多。因多模态不稳定波动的共同作用 ,尤其是在赤道上经向运动最强的 Yanai波的加入 ,使得赤道不稳定区的流体以混沌混合的方式均匀地弥散开 ,趋向于粗粒 (coarse- grained)意义下的均匀化。并有大量释放于赤道东太平洋不稳定区的示踪质点越过赤道进入对面半球。背景辐散流的加入能将部分示踪点输送出混合区使其不加入均匀化过程 ,故最后混入另一半球的质点数少于半数。过赤道交换速率则主要由混沌混合的强度有关。  相似文献   

14.
Incompressible SPH flow model for wave interactions with porous media   总被引:1,自引:0,他引:1  
The paper presents an Incompressible Smoothed Particle Hydrodynamics (ISPH) method to simulate wave interactions with a porous medium. The SPH method is a mesh free particle modeling approach that is capable of tracking the large deformation of free surfaces in an easy and accurate manner. The ISPH method employs a strict incompressible hydrodynamic formulation to solve the fluid pressure and the numerical solution is obtained by using a two-step semi-implicit scheme. The ISPH flow model solves the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the NS type model equations for the flows inside the porous media. The presence of porous media is considered by including additional friction forces into the equations. The developed ISPH model is first validated by the solitary and regular waves damping over a porous bed and the solitary wave interacting with a submerged porous breakwater. The convergence of the method and the sensitivity of relevant model parameters are discussed. Then the model is applied to the breaking wave interacting with a breakwater covered with a layer of porous materials. The computational results demonstrate that the ISPH flow model could provide a promising simulation tool in coastal hydrodynamic applications.  相似文献   

15.
沙埕港湾口断面潮流及余流特征分析   总被引:1,自引:0,他引:1  
基于对沙埕港湾口断面的连续走航观测资料,成功构建了沿走航断面的10个站点的连续海流序列,并分析了潮流、余流、潮通量等水文要素。分析结果表明,沙埕港湾口水道潮流类型为正规半日潮流,涨潮最先出现在中下层而落潮最先出现在上层,涨(落)潮转流相差约为30min。水道内潮流为往复流,M2和S2分潮流流速较大,倾角基本沿水道主轴方向。沙埕港湾口断面余流呈2层结构,10m以浅基本为东南向余流流出湾口,核心位于湾口断面南侧。10m以深多为西北向流入湾内,入流核心位于湾口断面中部的底层区域。对潮通量的计算表明,通过湾口进入沙埕港的潮通量约为1.63×108m3。  相似文献   

16.
17.
Sheet flow and suspension of sand in oscillatory boundary layers   总被引:1,自引:0,他引:1  
after revisionTime-dependent measurements of flow velocities and sediment concentrations were conducted in a large oscillating water tunnel. The measurements were aimed at the flow and sediment dynamics in and above an oscillatory boundary layer in plane bed and sheet-flow conditions. Two asymmetric waves and one sinusoidal wave were imposed using quartz sand with D50 = 0.21 mm. A new electro-resistance probe with a large resolving power was developed for the measurement of the large sediment concentrations in the sheet-flow layer. The measurements revealed a three layer transport system consisting of a pick-up/deposition layer, an upper sheet flow layer and a suspension layer.In the asymmetric wave cases the total net transport was directed “onshore” and was mainly concentrated in the thin sheet flow layer (< 0.5 cm) at the bed. A small net sediment flux was directed “offhore” in the upper suspension layer. The measured flow velocities, sediment concentrations and sedimenl fluxes showed a good qualitative agreement with the results of a (numerical) 1DV boundary-layer flow and transport model. Although the model did not describe all the observed processes in the sheet-flow and suspension layer, the computational results showed a reasonable agreement with measured net transport rates in a wide range of asymmetric wave conditions.  相似文献   

18.
Topographic corrugations such as canyons and ridges cross-cutting the path of a dense plume may effectively steer all or part of the plume downslope. Here, topographically steered flows are investigated experimentally, as laminar, dense gravity currents are observed to impinge on and flow along sloping, V-shaped canyons and ridges. Ridges, as well as canyons, were observed to steer the dense water downslope. A dynamical regime, in which the along-slope transport is balanced by a return flow in the Ekman layer to maintain a geostrophically balanced downslope flow along the corrugation, has been proposed. Results from a previously published analytical model describing such flows are compared with the laboratory experiments. The response of the flow to variations in four governing parameters (slope, rotation, volume flux and reduced gravity) is generally described well by the model and results agree qualitatively, although theory slightly underestimates the dense layer thickness. Vertical velocity profiles resolving the Ekman spiral were obtained using a laser Doppler velocimeter and they showed the secondary, transverse circulation superimposed on the primary, downslope flow. A particle flowing down the canyon/along the ridge can be expected to follow a helix-like path, and dye released within the dense layer showed this. The experiments support the analytical model and the dynamical regime proposed for topographically steered flows. The gravity current split in two when the transport capacity of the corrugation was exceeded; one part continued along the slope and the other flowed downslope along the corrugation.  相似文献   

19.
A three-dimensional numerical model for large-eddy simulation (LES) of oceanic turbulent processes is described. The numerical formulation comprises a spectral discretization in the horizontal directions and a high-order compact finite-difference discretization in the vertical direction. Time-stepping is accomplished via a second-order accurate fractional-step scheme. LES subgrid-scale (SGS) closure is given by a traditional Smagorinsky eddy-viscosity parametrization for which the model coefficient is derived following similarity theory in the near-surface region. Alternatively, LES closure is given by the dynamic Smagorinsky parametrization for which the model coefficient is computed dynamically as a function of the flow. Validation studies are presented demonstrating the temporal and spatial accuracy of the formulation for laminar flows with analytical solutions. Further validation studies are described involving direct numerical simulation (DNS) and LES of turbulent channel flow and LES of decaying isotropic turbulence. Sample flow problems include surface Ekman layers and wind-driven shallow water flows both with and without Langmuir circulation (LC), generated by wave effects parameterized via the well-known Craik–Leibovich (C–L) vortex force. In the case of the surface Ekman layers, the inner layer (where viscous effects are important) is not resolved and instead is parameterized with the Smagorinsky models previously described. The validity of the dynamic Smagorinsky model (DSM) for parameterizing the surface inner layer is assessed and a modification to the surface stress boundary condition based on log-layer behavior is introduced improving the performance of the DSM. Furthermore, in Ekman layers with wave effects, the implicit LES grid filter leads to LC subgrid-scales requiring ad hoc modeling via an explicit spatial filtering of the C–L force in place of a suitable SGS parameterization.  相似文献   

20.
A wind-driven, general circulation for a two-layer ocean with continental shelf-slope along the western boundary is studied numerically. Special attention is focused on the formation process of the western boundary current in the subtropical gyre. The western boundary current develops in the upper layer along the western boundary on the shelf-slope with a bottom trapped poleward flow in the lower layer. The poleward undercurrent is concentrated approximately along the contour lines of the potential vorticity,f/D, wheref is the Coriolis parameter andD the depth of the ocean. The separation of upper- and lower-layer flows on the shelf-slope represents a typical transient response. As the response approaches a steady state, the poleward undercurrent decreases in amplitude, and the motion tends to be confined to the upper layer. The flow pattern becomes similar to that found in a flat bottom ocean. A steady-state response is expected to be isostatic (no motion in the lower layer), even on the shelf-slope, as conservation of potential vorticity would suggest.The remarkable increase in transport of the western boundary current produced by the formation of an anticyclonic vortex on the shelf-slope extending throughout the hemisphere (Holland, 1973) does not occur in the wind-driven general circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号