首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

2.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

3.
Complex Singular Value Decomposition(CSVD)analysis technique was applied to study theQuasi Four year Oscillation(QFO)of air sea interaction and its coupled pattern evolution duringdifferent phases.Results show that:(1)CSVD method can better reveal phase relation betweentwo physical fields:(2)Not only northerly anomalies from Northern Hemisphere but alsosoutherly anomalies from Southern Hemisphere contribute to EI Nino.They converge in westernequatorial Pacific,leading to outburst of strong equatorial westerly anomalies,and result in strongEl Nino event onset:(3)An abnormal subtropical anticyclone circulation appears overnorthwestern Pacific while El Nino developing.It favors transitions from the warm SST(EINino)to the cold SST(La Nina),just as the tropical westerly anomalies produced by abnormalcyclone during a decaying La Nina.which encourage the development of El Nino:(4)Thewesterly anomalies in equatorial Pacific are mainly induced by eastward abnormal subtropicalcyclone pairs,which are located in north and south Pacific respectively,and are not the eastwardwesterly anomalies from equatorial Indian Ocean.  相似文献   

4.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

5.
Complex Singular Value Decomposition(CSVD)analysis technique was applied to study the Quasi Four year Oscillation(QFO)of air sea interaction and its coupled pattern evolution during different phases.Results show that:(1)CSVD method can better reveal phase relation between two physical fields:(2)Not only northerly anomalies from Northern Hemisphere but also southerly anomalies from Southern Hemisphere contribute to EI Nino.They converge in western equatorial Pacific,leading to outburst of strong equatorial westerly anomalies,and result in strong El Nino event onset:(3)An abnormal subtropical anticyclone circulation appears over northwestern Pacific while El Nino developing.It favors transitions from the warm SST(EINino)to the cold SST(La Nina),just as the tropical westerly anomalies produced by abnormal cyclone during a decaying La Nina.which encourage the development of El Nino:(4)The westerly anomalies in equatorial Pacific are mainly induced by eastward abnormal subtropical cyclone pairs,which are located in north and south Pacific respectively,and are not the eastward westerly anomalies from equatorial Indian Ocean.  相似文献   

6.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

7.
印度洋对ENSO事件的响应:观测与模拟   总被引:11,自引:3,他引:8  
观测事实显示,在El Ni(n~)o期间,伴随着赤道中东太平洋表层海温(SST)的升高,热带印度洋SST出现正距平.作者利用海气耦合模式模拟了印度洋对ENSO事件的上述响应,并进而讨论了其物理机制.所用模式为法国国家科研中心Pierre-Simon-Laplace 全球环境科学联合实验室(IPSL)发展的全球海气耦合模式.该模式成功地控制了气候漂移,能够合理再现印度洋的基本气候态.观测中与ENSO相关的热带印度洋SST变化,表现为全海盆一致的正距平,并且这种变化要滞后赤道中东太平洋SST变化大约一个季度,意味着它主要是对东太平洋SST强迫的一种遥响应,模式结果也支持这一机制,尽管模式中的南方涛动现象被夸大了,使得模拟的与ENSO相关联的SST正距平的位置南移,阿拉伯海和孟加拉湾被负距平(而不是正距平)所控制.研究表明,东太平洋主要通过大气桥影响潜热释放来影响印度洋SST变化.赤道东太平洋El Ni(n~)o事件的发展,导致印度洋上空风场异常自东而西传播;伴随着风场的变化,潜热发生相应变化,并最终导致SST异常的发生.非洲东海岸受索马里急流控制的海域,其SST的变化不能简单地利用热通量的变化来解释.证据显示,印度洋的增暖是ENSO事件发生的结果而不是其前期信号.  相似文献   

8.
The tropical Indian Ocean climate variability is investigated using an artificial neural network analysis called self-organizing map (SOM) for both observational data and coupled model outputs. The SOM successfully captures the dipole sea surface temperature anomaly (SSTA) pattern associated with the Indian Ocean Dipole (IOD) and basin-wide warming/cooling associated with ENSO. The dipole SSTA pattern appears only in boreal summer and fall, whereas the basin-wide warming/cooling appears mostly in boreal winter and spring owing to the phase-locking nature of these phenomena. Their occurrence also undergoes significant decadal variation. Composite diagrams constructed for nodes in the SOM array based on the simulated SSTA reveal interesting features. For the nodes with the basin-wide warming, a strong positive SSTA in the eastern equatorial Pacific, a negative Southern Oscillation, and a negative precipitation anomaly in East Africa are found. The nodes with the positive IOD are associated with a weak positive SSTA in the central equatorial Pacific or positive SSTA in the eastern equatorial Pacific, a positive (negative) sea level pressure anomaly in the eastern (western) tropical Indian Ocean, and a positive precipitation anomaly over East Africa. The warming in the central equatorial Pacific appears to correspond to El Niño Modoki discussed recently. These results suggest usefulness of SOM in studying large-scale ocean–atmosphere coupled phenomena.  相似文献   

9.
探讨了夏季(6—8月)西北太平洋(Western North Pacific,WNP)热带气旋生成频次(Tropical Cyclone Genesis Frequency,TCGF)与热带海温关系的年代际变化,发现影响WNP TCGF的热带海温型在1991/1992年发生了年代际变化。在1990年代初之前,TCGF正异常对应的热带海温异常(Sea Surface Temperature Anomaly,SSTA)呈现东部型La Ni?a衰减位相,前冬至春季WNP局地暖SSTA在其西北侧激发气旋异常,夏季时由热带印度洋冷SSTA继续维持。在1990年代初之后,TCGF正异常对应的热带SSTA呈现东部型La Ni?a向中部型El Ni?o快速转换的位相,夏季中太平洋暖SSTA在其西北侧激发气旋异常,同时热带东印度洋至海洋性大陆以及热带大西洋的冷SSTA通过垂直环流圈加强中太平洋的辐合上升运动,进一步维持其西北侧气旋异常。由于激发气旋异常的暖SSTA在第二个年代相较第一个年代明显偏南偏东,气旋异常和TCGF正异常在第二个年代也整体偏南且向东扩展至更远的区域。WNP TCGF与热带海温关系的年代际变化与1990年代初之后厄尔尼诺-南方涛动演变速率加快有关。   相似文献   

10.
两类ENSO事件前期的热带太平洋海温距平场   总被引:7,自引:2,他引:7  
分析了1956年以来两类ENSO事件热带太平洋海温距平场的特征。结果指出,东部型ElNino事件前期为LaNina事件年,热带中东太平洋为强的海温负距平,东部型LaNina事件前期为ElNino事件年,热带中不太平洋为强的海温正距平,中部型ElNino事件前期热带中西太平洋多为明显的海温正距平,中部型LaNina事件前期热带东太平洋多为明显的海渐负距平。两类ENSO事件前期海温距平场特殊基本相反。  相似文献   

11.
Summary The interannual variability of sea surface temperature (SST) anomalies in the tropical Indian Ocean is dominated mainly by a basin-scale mode (BM) and partly by an east–west contrast mode (zonal mode, ZM). The BM reflects the basin-scale warming or cooling and is highly correlated with El Nino with 3- to 6-month lags, while the ZM is marginally correlated with El Nino with 9-month lags.During an El Nino, large-scale anomalous subsidence over the maritime continent occurs as a result of an eastward shift in the rising branch of the Walker circulation suppresses convection over the eastern Indian Ocean, allowing more solar radiation over the eastern Indian Ocean. At the same time, the anomalous southeasterly wind over the equatorial Indian Ocean forces the thermocline over the western Indian Ocean to deepen, especially in the southern part. As a result, SST over the whole basin increases. As El Nino decays, the subsidence over the maritime continent ceases and so does the anomalous southeasterly wind. However, the thermocline perturbation does not quickly shoal back to normal because of inertia and it disperses as Rossby waves. These Rossby waves are reflected back as an equatorial Kelvin wave, causing deepening of the thermocline in the eastern Indian Ocean, and preventing SSTs from cooling in that region. Moreover, the weaker wind speed of the monsoon circulation results in less latent heat loss, and thus warms the eastern Indian Ocean. These two processes therefore help to maintain warm SSTs over the eastern Indian Ocean until fall. During the fall, the warm SST over the eastern Indian Ocean and the cold SST over the western Indian Ocean are enhanced by air–sea interaction and the ZM returns. The ZM dissipates through the seasonal reversal of the monsoon atmospheric circulation and the boundary-reflected Kelvin wave. In the same manner, a basin-scale cooling in the tropical Indian Ocean can induce the ZM warming in the west and cooling in the east.  相似文献   

12.
The time series of sea surface temperature (SST), sea level pressure (SLP), zonal wind (U) and total cloudiness (CA), for the period of 1950-1979, over a 8o×8o grid-point latitudinal belt between 32oS and 32oN are made from COADS (Comprehensive Ocean-Atmosphere Data Set). The time harmonic analysis and power spectra analysis show that there exist quasi-biennial oscillation (QBO), three and half years oscillation (SO), five and half years oscillation (FYO) and eleven years oscillation (EYO) in these time series. The main propagation characteristics of these interannual low-frequency oscillations are as follows:(1) The variance analysis of SST shows that there is an active region of QBO and SO (with maximum variance), coming from the southwestern part of the subtropical Pacific, stretching eastward up to the west coast of South America, and then northward to the eastern equatorial Pacific. The QBO and SO disturbances of SST follow the same route and cause the anomaly of SST (El Nino and period of cold water) in the eastern equatorial Pacific.(2) Either the QBO or SO of SST can cause El Nino events, although it is easier when they are situated in the same phase of warm water at the eastern equatorial Pacific. The FYO of SST seems to be a standing oscillation. It plays an important role on the formation of strong El Nino events or strong cold water events.(3) The QBO and SO of U propagate eastward along the equator. The origin of QBO and SO may at least be traced as far as the western Indian Ocean. While they propagate along the equator, it strengthens two times at 90oE and the western Pacific, respectively. Like SST, the FYO of U is somehow a standing oscillation.(4) The Oscillations of U have a good coupling relationship with those of SST, while they propagate. When the QBO and SO of SST move to the east side of the eastern equatorial Pacific, it is the time for the QBO and SO of U to enter into the east part of the western Pacific.It is clear that, when we do research work on the formation of El Nino events, our consideration would not be confined to the tropics, it should cover the subtropical region in the southern Pacific. The features of the circulation and other oceanic states in this area are very important to the El Nino events.  相似文献   

13.
应用NMC 17年热带格点风及OLR资料,对比分析了厄尼诺年与反厄尼诺年热带环流的差异,发现厄尼诺现象使多年平均位于西太平洋上的最强盛的对流加热区东移到中太平洋,太平洋热带地区东西向对流加热梯度减弱,造成中东太平洋上的Walker环流及西太平洋与印度洋上的反Walker环流场比常年减弱;同时,厄尼诺现象也使中东太平洋地区经向反Hadley环流及美洲大陆上空的Hadley环流减弱。  相似文献   

14.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

15.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

16.
An empirical atmospheric model(EAM) based on the singular value decomposition(SVD) method is evaluated using the composite El Ni(?)o/Southern Oscillation(ENSO) patterns of sea surface temperature (SST) and wind anomalies as the target scenario.Two versions of the SVD-based EAM were presented for comparisons.The first version estimates the wind anomalies in response to SST variations based on modes that were calculated from a pair of global wind and SST fields(i.e.,conventional EAM or CEAM).The second version utilizes the same model design but is based on modes that were calculated in a region-wise manner by separating the tropical domain from the remaining extratropical regions(i.e.,region-wise EAM or REAM). Our study shows that,while CEAM has shown successful model performance over some tropical areas, such as the equatorial eastern Pacific(EEP),the western North Pacific(WNP),and the tropical Indian Ocean(TIO),its performance over the North Pacific(NP) seems poor.When REAM is used to estimate the wind anomalies instead of CEAM,a marked improvement over NP readily emerges.Analyses of coupled modes indicate that such an improvement can be attributed to a much stronger coupled variability captured by the first region-wise SVD mode at higher latitudes compared with that captured by the conventional one. The newly proposed way of constructing the EAM(i.e.,REAM) can be very useful in the coupled studies because it gives the model a wider application beyond the commonly accepted tropical domain.  相似文献   

17.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

18.
利用1979—2019年Hadley中心的海表温度资料、GPCP的降水资料以及NCEP-DOE的再分析资料等,分析了北半球春季热带南大西洋海表温度异常与北半球夏季亚澳季风区降水异常的联系。研究表明,北半球春季热带南大西洋海表温度异常与随后夏季热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区的降水异常为显著负相关(正相关)关系。北半球春季热带南大西洋的海表温度正异常可以引起热带大西洋和热带太平洋间的异常垂直环流,其中异常上升支(下沉支)位于热带大西洋(热带中太平洋)。热带中太平洋的异常下沉气流和低层辐散气流引起热带中西太平洋低层的异常东风,后者有利于热带中东太平洋海表温度出现负异常。通过Bjerknes正反馈机制,热带中东太平洋海表温度异常从北半球春季到夏季得到发展。热带中东太平洋海表温度负异常激发的Rossby波使得北半球夏季热带西太平洋低层出现一对异常反气旋。此时,850 hPa上热带西太平洋到海洋性大陆地区为显著的异常东风,有利于热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区出现异常的水汽辐散(辐合),导致该地区降水减少(增加)。  相似文献   

19.
In this paper we seek to identify inter-annual sea surface temperature anomalies (SSTA) patterns outside the tropical Pacific that may influence El Niño/Southern Oscillation (ENSO) through atmospheric teleconnections. We assume that a linear ENSO hindcast based on tropical Pacific warm water volume and Niño3.4 SSTA indices captures tropical Pacific intrinsic predictability inherent to recharge oscillator dynamics. This simple hindcast model displays statistically significant skill at the 95 % confidence level at leads of up to seven seasons ahead of the ENSO peak. Our results reveal that ENSO-independent equatorial wind stress anomalies only significantly improve the skill of that linear hindcast at the 95 % level in boreal spring and summer before the ENSO peak and in boreal fall, five seasons ahead of the ENSO peak. At those seasons, the robust large-scale SST patterns that provide a statistically significant enhancement of ENSO predictability are related to the Atlantic meridional mode and south Pacific subtropical dipole mode in spring, the Indian Ocean Dipole and the south Atlantic subtropical dipole mode in fall. While the first two regions display significant simultaneous correlations with western equatorial Pacific wind stress in three reanalyses (ERA-I, NCEP and NCEP2), the Indian Ocean Dipole and south Atlantic subtropical dipole mode correlation with Pacific winds is less robust amongst re-analyses. We discuss our results in view of other studies that suggest a remote influence of various regions on ENSO. Although modest, the sensitivity of our results to the dataset and to details of the analysis method illustrates that finding regions that influence ENSO from the statistical analysis of observations is a difficult task.  相似文献   

20.
The Indian Ocean sea surface temperature (SST) variability has been represented with the two dominant variability modes: the Indian Ocean basin-wide (IOBW) and dipole (IOD) modes. Here we investigate future changes of the two modes together with mean state and El Niño and Southern Oscillation (ENSO) relationship under the anthropogenic global warming using 20 coupled models that participated in the phase five of Coupled Model Intercomparison Project by comparing the historical run from 1950 to 2005 and the RCP 4.5 run from 2050 to 2099. The five best models are selected based on the evaluation of the 20 models’ performances in simulating the two modes and Indian Ocean basic state for the latest 56 years. They are capable of capturing the IOBW and IOD modes in their spatial distribution, seasonal cycle, major periodicity, and relationship with ENSO to some extent. The five best models project the significant changes in the Indian Ocean mean state and variability including the two dominant modes in the latter part of twenty-first century under the anthropogenic warming scenario. First, the annual mean climatological SST displays an IOD-like pattern change over the Indian Ocean with enhanced warming in the northwestern Indian Ocean and relatively weaker warming off the Sumatra–Java coast. It is also noted that the monthly SST variance is increased over the eastern and southwestern Indian Ocean. Second, the IOBW variability on a quasi-biennial time scale will be enhanced due to the strengthening of the ENSO–IOBW mode relationship although the total variance of the IOBW mode will be significantly reduced particularly during late summer and fall. The enhanced air-sea coupling over the Indian-western Pacific climate in response to El Nino activity in the future projection makes favorable condition for a positive IOD while it tends to derive relatively cold temperature over the eastern Indian Ocean. This positive IOD-like ENSO response weakens the relationship between the eastern Indian Ocean and El Nino while strengthens the relationship with western Indian Ocean. Third, the IOD mode, intrinsic coupled mode of the Indian Ocean may not be changed appreciably under the anthropogenic global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号