首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stationarity Scores on Training Images for Multipoint Geostatistics   总被引:2,自引:2,他引:0  
This research introduces a novel method to assess the validity of training images used as an input for Multipoint Geostatistics, alternatively called Multiple Point Simulation (MPS). MPS are a family of spatial statistical interpolation algorithms that are used to generate conditional simulations of property fields such as geological facies. They are able to honor absolute “hard” constraints (e.g., borehole data) as well as “soft” constraints (e.g., probability fields derived from seismic data, and rotation and scale). These algorithms require 2D or 3D training images or analogs whose textures represent a spatial arrangement of geological properties that is presumed to be similar to that of a target volume to be modeled. To use the current generation of MPS algorithms, statistically valid training image are required as input. In this context, “statistical validity” includes a requirement of stationarity, so that one can derive from the training image an average template pattern. This research focuses on a practical method to assess stationarity requirements for MPS algorithms, i.e., that statistical density or probability distribution of the quantity shown on the image does not change spatially, and that the image shows repetitive shapes whose orientation and scale are spatially constant. This method employs image-processing techniques based on measures of stationarity of the category distribution, the directional (or orientation) property field and the scale property field of those images. It was successfully tested on a set of two-dimensional images representing geological features and its predictions were compared to actual realizations of MPS algorithms. An extension of the algorithms to 3D images is also proposed. As MPS algorithms are being used increasingly in hydrocarbon reservoir modeling, the methods described should facilitate screening and selection of the input training images.  相似文献   

2.
利用测井数据进行岩性识别的多元统计方法   总被引:1,自引:0,他引:1  
在中国大陆科学钻探CCSD-1井110~2 000 m井段实测资料的基础上,通过取芯井岩芯和相应测井曲线对应特征的分析,挑选出对岩性识别能力强的测井参数,应用多组判别分析方法,建立了研究区各类岩性的识别模型.应用该模型可对井剖面地层进行连续自动解释,获得整口井的岩性解释剖面图,为进一步的地质研究提供基础资料.最后将得出的结果与分层资料进行误差分析,以判断资料的可靠性和方法的实用性.  相似文献   

3.
利用三维地质模拟技术重构地质现象的三维空间分布,是实现自然资源管理和风险评估的重要基础和前提。多点统计学方法通过探寻多点间的空间结构关系,结合随机模拟方法生成具有差异性的模拟结果,较好地再现了复杂的地质现象。然而,如何构建合适、有效的训练图像一直是基于多点统计学三维地质模拟的核心问题。本文提出了一种改进的多点统计学算法。本方法结合了序贯模拟和迭代的方法,将二维剖面扩展为三维训练图像,再结合EM-Like算法,实现了三维地质结构的优化模拟。建模实例结果表明,本方法能确保训练图像对内部模拟网格的约束,准确模拟研究区的地层层序,并很好地再现二维地质剖面所反映的地层结构关系。  相似文献   

4.
Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.  相似文献   

5.
6.
Application of Multiple Point Geostatistics to Non-stationary Images   总被引:5,自引:2,他引:3  
Simulation of flow and solute transport through aquifers or oil reservoirs requires a precise representation of subsurface heterogeneity that can be achieved by stochastic simulation approaches. Traditional geostatistical methods based on variograms, such as truncated Gaussian simulation or sequential indicator simulation, may fail to generate the complex, curvilinear, continuous and interconnected facies distributions that are often encountered in real geological media, due to their reliance on two-point statistics. Multiple Point Geostatistics (MPG) overcomes this constraint by using more complex point configurations whose statistics are retrieved from training images. Obtaining representative statistics requires stationary training images, but geological understanding often suggests a priori facies variability patterns. This research aims at extending MPG to non-stationary facies distributions. The proposed method subdivides the training images into different areas. The statistics for each area are stored in separate frequency search trees. Several training images are used to ensure that the obtained statistics are representative. The facies probability distribution for each cell during simulation is calculated by weighting the probabilities from the frequency trees. The method is tested on two different object-based training image sets. Results show that non-stationary training images can be used to generate suitable non-stationary facies distributions.  相似文献   

7.
The hydrodispersive properties of porous sediments are strongly influenced by the heterogeneity at fine scales, which can be modeled by geostatistical simulations. In order to improve the assessment of the properties of three different geostatistical simulation methods (Sequential indicator simulation, SISIM; Transition probability geostatistical simulation, T-PROGS; Multiple point simulation, MPS) a comparison test at different scales was performed for a well-exposed aquifer analogue. In the analysed volume (approximately 30,000?m3) four operative hydrofacies have been recognised: very fine sand and silt, sand, gravelly sand and open framework gravel. Several equiprobable realizations were computed with SISIM, MPS and T-PROGS for a test volume of approximately 400?m3 and for the entire volume, and the different outcomes were compared with visual inspection and connectivity analysis of the very or poorly permeable structures. The comparison of the different simulations shows that the geological model is best reproduced when the simulations are realised separately for each highest rank depositional element and subsequently merged. Moreover, the three methods yield different images of the volume; in particular MPS is efficient in mapping the geometries of the most represented hydrofacies, whereas SISIM and T-PROGS can account for the distribution of the less represented facies.  相似文献   

8.
The multiple-point simulation (MPS) method has been increasingly used to describe the complex geologic features of petroleum reservoirs. The MPS method is based on multiple-point statistics from training images that represent geologic patterns of the reservoir heterogeneity. The traditional MPS algorithm, however, requires the training images to be stationary in space, although the spatial distribution of geologic patterns/features is usually nonstationary. Building geologically realistic but statistically stationary training images is somehow contradictory for reservoir modelers. In recent research on MPS, the concept of a training image has been widely extended. The MPS approach is no longer restricted by the size or the stationarity of training images; a training image can be a small geometrical element or a full-field reservoir model. In this paper, the different types of training images and their corresponding MPS algorithms are first reviewed. Then focus is placed on a case where a reservoir model exists, but needs to be conditioned to well data. The existing model can be built by process-based, object-based, or any other type of reservoir modeling approach. In general, the geologic patterns in a reservoir model are constrained by depositional environment, seismic data, or other trend maps. Thus, they are nonstationary, in the sense that they are location dependent. A new MPS algorithm is proposed that can use any existing model as training image and condition it to well data. In particular, this algorithm is a practical solution for conditioning geologic-process-based reservoir models to well data.  相似文献   

9.
Multiple-point statistics (MPS) provides a flexible grid-based approach for simulating complex geologic patterns that contain high-order statistical information represented by a conceptual prior geologic model known as a training image (TI). While MPS is quite powerful for describing complex geologic facies connectivity, conditioning the simulation results on flow measurements that have a nonlinear and complex relation with the facies distribution is quite challenging. Here, an adaptive flow-conditioning method is proposed that uses a flow-data feedback mechanism to simulate facies models from a prior TI. The adaptive conditioning is implemented as a stochastic optimization algorithm that involves an initial exploration stage to find the promising regions of the search space, followed by a more focused search of the identified regions in the second stage. To guide the search strategy, a facies probability map that summarizes the common features of the accepted models in previous iterations is constructed to provide conditioning information about facies occurrence in each grid block. The constructed facies probability map is then incorporated as soft data into the single normal equation simulation (snesim) algorithm to generate a new candidate solution for the next iteration. As the optimization iterations progress, the initial facies probability map is gradually updated using the most recently accepted iterate. This conditioning process can be interpreted as a stochastic optimization algorithm with memory where the new models are proposed based on the history of the successful past iterations. The application of this adaptive conditioning approach is extended to the case where multiple training images are proposed as alternative geologic scenarios. The advantages and limitations of the proposed adaptive conditioning scheme are discussed and numerical experiments from fluvial channel formations are used to compare its performance with non-adaptive conditioning techniques.  相似文献   

10.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

11.
岩性识别的多元统计方法   总被引:6,自引:0,他引:6  
李汉林  赵永军 《地质论评》1998,44(1):106-112
识别地层岩性是在地层对比,沉积相分析等地质研究中的重要任务,在岩心资源较少,测井资料较多的情况下,利用多元统计分析进行地层岩性识别则是一种有效方法,为此,本文在胜利油田永一沙田砾岩体实际资料的基础上,通过取心井岩心和相应测井曲线的对应特征分析,应用判别分析方法,挑选了对岩性识别能力强的测井参数,确定了相应的岩性识别函数,利用该函数可以快速反应不同深度点上的地层岩性,并绘制相应的岩性剖面图等,为进一  相似文献   

12.
Electrical borehole image logs yield high-resolution information about variations in micro-resistivity along the borehole wall. To interpret these variations in terms of sedimentary structures and lithofacies types, calibration with real rock is needed. Normally, the only real rock available is core, and this only provides one-dimensional information. In this paper, the interpretation of fluvial facies types from borehole image logs was established by direct comparison with outcrops. Four fluvial facies associations were established in an outcrop study of a low net-to-gross fluvial succession: (i) meandering rivers, (ii) braided rivers, (iii) crevasse deltas, and (iv) crevasse splays. The lithofacies characteristics and palaeocurrent distributions of each fluvial facies association were established. Two 200 m deep wells were drilled behind the cliff face outcrops. One well was cored to a depth of 150 m and borehole image logs were recorded in both wells. The wells were correlated with the outcrop. The borehole image logs were analysed by their vertical colour succession and the dipmeter pattern. Image log facies were established, and these were interpreted in terms of the fluvial facies associations encountered in the corresponding outcrops. The study of borehole image logs yields a set of diagnostic criteria for a detailed fluvial facies interpretation and the establishment of depositional trends, and thus provides a powerful tool for the direct interpretation of fluvial facies in a reservoir setting.  相似文献   

13.
Multi-point statistics (MPS) has emerged as an advanced geomodeling approach. A practical MPS algorithm named snesim (simple normal equations simulation), which uses categorical-variable training images, was proposed in 2001. The snesim algorithm generates a search tree to store the occurrence statistics of all patterns in the training image within a given set of search templates before the simulation proceeds. The snesim search tree concept makes MPS simulation central processing unit efficient but consumes large amounts of memory, particularly when three-dimensional training images contain complex patterns and when a large search template is required to ensure optimal reproduction of the image patterns. To crack the memory-restriction bottleneck, we have developed a compact search tree that contains the same information but reduces memory cost by one order of magnitude. Furthermore, the compact structure also accelerates MPS simulation significantly. Such remarkable improvement makes MPS a more practical tool to use in building the large and complex three-dimensional facies models required in the oil and gas industry.  相似文献   

14.
In porous aquifers, groundwater flow and solute transport strongly depend on the sedimentary facies distribution at fine scale, which determines the heterogeneity of the conductivity field; in particular, connected permeable sediments could form preferential flow paths. Therefore, properly defined statistics, e.g. total and intrinsic facies connectivity, should be correlated with transport features. In order to improve the assessment of the relevance of this relationship, some tests are conducted on two ensembles of equiprobable realizations, obtained with two different geostatistical simulation methods—sequential indicator simulation and multiple point simulation (MPS)—from the same dataset, which refers to an aquifer analogue of sediments deposited in a fluvial point-bar/channel association. The ensembles show different features; simulations with MPS are more structured and characterised by preferential flow paths. This is confirmed by the analysis of transport connectivities and by the interpretation of data from numerical experiments of conservative solute transport with single and dual domain models. The use of two ensembles permits (1) previous results obtained for single realizations to be consolidated on a more firm statistical basis and (2) the application of principal component analysis to assess which quantities are statistically the most relevant for the relationship between connectivity indicators and flow and transport properties.  相似文献   

15.
16.
17.
随机分形在刻划储层非均质特性中的应用   总被引:12,自引:3,他引:9  
储集层的非均质性质普遍存在于砂泥岩储层、碳酸盐岩和火成岩储层中。线性数学手段难以精确描述非均质储层参数的空间分布特征。在详细分析砂泥岩地层参数非均质特性的基础上,将分形方法与克里金方法相结合来刻划储层密度和声波时差的分布规律,通过对两口井的相应参数进行插值产生的虚测井值与真实测井值吻合良好。在井距合理的情况下,统计分形方法能够较好地刻划储集层的非均质性。  相似文献   

18.
The spatial continuity of facies is one of the key factors controlling flow in reservoir models. Traditional pixel-based methods such as truncated Gaussian random fields and indicator simulation are based on only two-point statistics, which is insufficient to capture complex facies structures. Current methods for multi-point statistics either lack a consistent statistical model specification or are too computer intensive to be applicable. We propose a Markov mesh model based on generalized linear models for geological facies modeling. The approach defines a consistent statistical model that is facilitated by efficient estimation of model parameters and generation of realizations. Our presentation includes a formulation of the general framework, model specifications in two and three dimensions, and details on how the parameters can be estimated from a training image. We illustrate the method using multiple training images, including binary and trinary images and simulations in two and three dimensions. We also do a thorough comparison to the snesim approach. We find that the current model formulation is applicable for multiple training images and compares favorably to the snesim approach in our test examples. The method is highly memory efficient.  相似文献   

19.
Geophysical logs provide a strong mechanism for interpretation and determination of the depositional environments, facies and also help in interpretations of hydrogeologic units. Spontaneous potential (SP) and resistivity logs can be used as an indicator of textural parameters. Pondicherry region has a complicated geology and with formation of different ages. The boreholes (BH) of this region are examined for litholog, SP and resistivity from four different BH locations, viz, Ariyankuppam, Chinnaverampattinam, Thavalakuppam and Nallavadu. These locations were studied and interpreted by using the shapes of the curves to identify the depositional environments, and this was later compared with the vertical litholog profile. Comparing the variation of these logs, the lateral variation of sedimentary facies was also attempted. The average resistivity values of Ariyankuppam, Chinnaverampattinam, Thavalakuppam and Nallavadu are 42.4, 30.4, 50.4 and 28.3?Ωm, respectively. Majority of the resistivity values corresponds from fine- to medium-grained sand, clayey pebbles, fine to very coarse sand and clayey sand with lignite. Frequency of resistivity values in each BH were identified for determining the dominant representative grain size. The study has pointed out the lithological variation of the system laterally and vertically using geophysical well logs.  相似文献   

20.
The static modeling and dynamic simulation are essential and critical processes in petroleum exploration and development. In this study, lithofacies models for Wabiskaw Member in Athabasca, Canada are generated by multipoint statistics(MPS) and then compared with the models built by sequential indicator simulation(SIS). Three training images(Tls) are selected from modern depositional environments;the Orinoco River Delta estuary, Cobequid bay-Salmon River estuary, and Danube River delta environment. In order to validate lithofacies models, average and variance of similarity in lithofacies are calculated through random and zonal blind-well tests.In random six-blind-well test, similarity average of MPS models is higher than that of SIS model. The Salmon MPS model closely resembles facies pattern of Wabiskaw Member in subsurface. Zonal blind-well tests show that successful lithofacies modeling for transitional depositional setting requires additional or proper zonation information on horizontal variation, vertical proportion, and secondary data.As Wabiskaw Member is frontier oilsands lease, it is impossible to evaluate the economics from production data or dynamic simulation. In this study, a dynamic steam assisted gravity drainage(SAGD)performance indicator(SPIDER) on the basis of reservoir characteristics is calculated to build 3 D reservoir model for the evaluation of the SAGD feasibility in Wabiskaw Member. SPIDER depends on reservoir properties, economic limit of steam-oil ratio, and bitumen price. Reservoir properties like porosity,permeability, and water saturation are measured from 13 cores and calculated from 201 well-logs. Three dimensional volumes of reservoir properties are constructed mostly based on relationships among properties. Finally, net present value(NPV) volume can be built by equation relating NPV and SPIDER. The economic area exceeding criterion of US$ 10,000 is identified, and the ranges of reservoir properties are estimated. NPV-volume-generation workflow from reservoir parameter to static model provides costand time-effective method to evaluate the oilsands SAGD project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号