首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takaaki Takeda  Keiji Ohtsuki 《Icarus》2007,189(1):256-273
We perform N-body simulations of impacts between initially non-rotating rubble-pile asteroids, and investigate mass dispersal and angular momentum transfer during such collisions. We find that the fraction of the dispersed mass (Mdisp) is approximately proportional to , where Qimp is the impact kinetic energy; the power index α is about unity when the impactor is much smaller than the target, and 0.5?α<1 for impacts with a larger impactor. Mdisp is found to be smaller for more dissipative impacts with small values of the restitution coefficient of the constituent particles. We also find that the efficiency of transfer of orbital angular momentum to the rotation of the largest remnant depends on the degree of disruption. In the case of disruptive oblique impacts where the mass of the largest remnant is about half of the target mass, most of the orbital angular momentum is carried away by the escaping fragments and the efficiency becomes very low (<0.05), while the largest remnant acquires a significant amount of spin angular momentum in moderately disruptive impacts. These results suggest that collisions likely played an important role in rotational evolution of small asteroids, in addition to the recoil force of thermal re-radiation.  相似文献   

2.
We have extend Stormer’s problem considering four magnetic dipoles in motion trying to justify the phenomena of extreme “orderlines” such as the ones observed in the rings of Saturn; the aim is to account the strength of the Lorentz forces estimating that the Lorentz field, co-acting with the gravity field of the planet, will limit the motion of all charged particles and small size grains with surface charges inside a layer of about 200 m thickness as that which is observed in the rings of Saturn. For this purpose our interest feast in the motion of charged particles with neglected mass where only electromagnetic forces accounted in comparison to the weakness of the Newtonian fields. This study is particularly difficult because in the regions we investigate these motions there is enormous three dimensional instability. Following the Poincare’s hypothesis that periodic solutions are ‘dense’ in the set of all solutions in Hamiltonian systems we try to calculate many families of periodic solutions and to study their stability. In this work we prove that in this environment charged particles can trace planar symmetric periodic orbits. We discuss these orbits in details and we give their symplectic relations using the Hamiltonian formulation which is related to the symplectic matrix. We apply numerical procedures to find families of these orbits and to study their stability. Moreover we give the bifurcations of these families with families of planar asymmetric periodic orbits and families of three dimensional symmetric periodic orbits.  相似文献   

3.
The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids (∼350,000 brighter than V<20) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.  相似文献   

4.
Hidden Mass in the Asteroid Belt   总被引:1,自引:0,他引:1  
The total mass of the asteroid belt is estimated from an analysis of the motions of the major planets by processing high precision measurements of ranging to the landers Viking-1, Viking-2, and Pathfinder (1976-1997). Modeling of the perturbing accelerations of the major planets accounts for individual contributions of 300 minor planets; the total contribution of all remaining small asteroids is modeled as an acceleration caused by a solid ring in the ecliptic plane. Mass Mring of the ring and its radius R are considered as solve-for parameters. Masses of the 300 perturbing asteroids have been derived from their published radii based mainly on measured fluxes of radiation, making use of the corresponding densities. This set of asteroids is grouped into three classes in accordance with physical properties and then corrections to the mean density for each class are estimated in the process of treating the observations. In this way an improved system of masses of the perturbing asteroids has been derived.The estimate Mring≈(5±1)×10−10M is obtained (M is the solar mass) whose value is about one mass of Ceres. For the mean radius of the ring we have R≈2.80 AU with 3% uncertainty. Then the total mass Mbelt of the main asteroid belt (including the 300 asteroids mentioned above) may be derived: Mbelt≈(18±2)×10−10M. The value Mbelt includes masses of the asteroids which are already discovered, and the total mass of a large number of small asteroids—most of which cannot be observed from the Earth. The second component Mring is the hidden mass in the asteroid belt as evaluated from its dynamical impact onto the motion of the major planets.Two parameters of a theoretical distribution of the number of asteroids over their masses are evaluated by fitting to the improved set of masses of the 300 asteroids (assuming that there is no observational selection effect in this set). This distribution is extrapolated to the whole interval of asteroid masses and as a result the independent estimate Mbelt≈18×10−10M is obtained which is in excellent agreement with the dynamical finding given above.These results make it possible to predict the total number of minor planets in any unit interval of absolute magnitude H. Such predictions are compared with the observed distribution; the comparison shows that at present only about 10% of the asteroids with absolute magnitude H<14 have been discovered (according to the derived distribution, about 130,000 such asteroids are expected to exist).  相似文献   

5.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

6.
David Morrison 《Icarus》1977,31(2):185-220
The radiometric method of determining diameters of asteroids is reviewed, and a synthesis of radiometric and polarimetric measurements of the diameters and geometric albedos of a total of 187 asteroids is presented. All asteroids with diameters greater than 250 km are identified, and statistical studies can be carried out of the size distributions of different albedo classes down to 80-km diameter for the entire main asteroid belt (2.0–3.5 AU). The distribution of albedos is strongly bimodal, with mean albedos for the C and S groups of 0.035 and 0.15, respectively. The C asteroids outnumber the S at all sizes and all values of semi-major axis, increasing from a little over half the population inside 2.5 AU to more than 95% beyond 3.0 AU; for all objects with D > 70 km, the ratio C/(C+S) is 0.88 ± 0.04. More than half of all asteroids in this size range have a > 3.0 AU. The M asteroids constitute about 5% of the population for a < 3.0 AU, but no members of of this class have been identified in the outer belt. There are no significant differences between the distributions of C, S, and M asteroids for the largest asteroids (D > 200 km) and for those of intermediate size (200–270 km). The total mass in the belt, down to 70-km size, but excluding Ceres, is about 2 × 1024 g. Evidence is presented that several large asteroids rotate in a prograde sense, and that a real difference existsbetween the bulk densities of Ceres and Vesta.  相似文献   

7.
Masses of 19 asteroids have been determined from the analysis of their gravitational effect on the motion of perturbed bodies. The following asteroids were selected as perturbed bodies: (1) those which had single close encounters with the perturbing asteroid; (2) those whose mean motion was in a 1 : 1 commensurability with that of the perturber and which had close or moderate recurrent encounters with the perturber. The perturber mass was determined from observations of several tens of perturbed asteroids that were selected from these two groups. The selection criterion was the error of the mass determined from observations of only one asteroid. Positional observations of the asteroids on the interval 1900–2002 were used. The masses were determined with errors by an order-half an order of magnitude smaller than the masses found. The results are compared with those of other authors.  相似文献   

8.
Stability of Surface Motion on a Rotating Ellipsoid   总被引:2,自引:0,他引:2  
The dynamical environment on the surface of a rotating, massive ellipsoid is studied, with applications to surface motion on an asteroid. The analysis is performed using a combination of classical dynamics and geometrical analysis. Due to the small sizes of most asteroids, their shapes tend to differ from the classical spheroids found for the planets. The tri-axial ellipsoid model provides a non-trivial approximation of the gravitational potential of an asteroid and is amenable to analytical computation. Using this model, we study some properties of motion on the surface of an asteroid. We find all the equilibrium points on the surface of a rotating ellipsoid and we show that the stability of these points is intimately tied to the conditions for a Jacobi or MacLaurin ellipsoid of equilibria. Using geometrical analysis we can define global constraints on motion as a function of shape, rotation rate, and density, we find that some asteroids should have accumulation of material at their ends, while others should have accumulation of surface material at their poles. This study has implications for motion of a rover on an asteroid, and for the distribution of natural material on asteroids, and for a spacecraft hovering over an asteroid.  相似文献   

9.
《Icarus》1986,68(3):377-394
Dust particles that are larger than 1 μm, when injected into the Solar System from comets and asteroids, will spiral into the Sun due to the Poynting-Robertson effect. During the process of spiraling in, such dust particles accumulate solar flare tracks in their component minerals. The accumulated track density for a given dust grain is a function of the duration of its space exposure and its distance from the Sun. Using a computer model, it was determined that the expected track density distributions from grains produced by comets are very different from those produced by asteroids. Individual asteroids produce populations of particles that arrive at 1 AU with scaled track density distributions containing “spikes,” while comets supply particles with a flatter and wider distribution of track densities. Particles with track densities above 3 × 107 (sϱA/v) tracks/cm2 have probably been exposed to solar flare tracks prior to injection into the interplanetary medium and are therefore likely to be asteroidal. Particles with track densities below 0.7 × 107(sϱA/v) tracks/cm2 must be derived from comets or Earth-crossing asteroids. Earth-crossing asteroids are not responsible for all the dust collected at 1 AU since they cannot produce the large track densities observed in some of the interplanetary dust particles collected in the stratosphere. The track densities observed in the stratospheric dust fall within the predicted range, but there is at present an insufficient number of carefully determined densities to make strong statements about the sources of the present dust population.  相似文献   

10.
We consider the estimates of the main forces acting on dust particles near a cometary nucleus. On the basis of these estimates, the motion of dust particles of different structure and mass is analyzed. We consider the following forces: (1) the cometary nucleus gravity, (2) the solar radiation pressure, and (3) the drag on dust particles by a flow of gas produced in the sublimation of cometary ice. These forces are important for modeling the motion of dust particles relative to the cometary nucleus and may substantially influence the dust transfer over its surface. In the simulations, solid silicate spheres and homogeneous ballistic aggregates are used as model particles. Moreover, we propose a technique to build hierarchic aggregates—a new model of quasi-spherical porous particles. A hierarchic type of aggregates makes it possible to model rather large dust particles, up to a millimeter in size and larger, while no important requirements for computer resources are imposed. We have shown that the properties of such particles differ from those of classical porous ballistic aggregates, which are usually considered in the cometary physics problems, and considering the microscopic structure of particles is of crucial significance for the analysis of the observational data. With the described models, we study the dust dynamics near the nucleus of comet 67P/Churyumov–Gerasimenko at an early stage of the Rosetta probe observations when the comet was approximately at 3.2 AU from the Sun. The interrelations between the main forces acting on dust aggregates at difference distances from the nucleus have been obtained. The dependence of the velocity of dust aggregates on their mass has been found. The numerical modeling results and the data of spaceborne observations with the Grain Impact Analyzer and Dust Accumulator (GIADA) and the Cometary Secondary Ion Mass Analyzer (COSIMA) onboard the Rosetta probe are compared at a quantitative level.  相似文献   

11.
The mission designed to explore asteroids has nowadays become a hot spot of deep space exploration, and the accessibility of the explored objects is the most important problem to make clear. The number of asteroids is large, and it needs an enormous quantity of calculations to evaluate the accessibility for all asteroids. In this paper, based on the direct transfer strategy, we have calculated the accessibility for the different regions of the solar system and compared it with the distribution of asteroids. It is found that most main-belt asteroids are accessible by the direct transfer orbit with the launch energy of C3 = 50 km2/s2, and that with an additional small velocity correction, the designed trajectory is able to realize the multi-target flyby mission. Such a kind of multi-target flyby can reach the same effect of the orbit manoeuvre in the ΔV-EGA trajectory scheme[1,2]. Being assisted by the earth's gravity, the accompanying flight with asteroids or the exploration of more distant asteroids can be realized with a lower energy. In the end, as an example, a trajectory scheme is given, in which the probe flies by multiple main-belt asteroids at first, then with the assistance of the earth's gravity, it makes the accompanying flight to a more distant asteroid.  相似文献   

12.
We discuss the dynamics of a charged nonrelativistic particle in electromagnetic field of a rotating magnetized celestial body. The equations of motion of the particle are obtained and some particular solutions are found. Effective potential energy is defined on the base of the first constant of motion. Regions accessible and inaccessible for a charged particle motion are studied and depicted for different values of a constant of motion.  相似文献   

13.
Joseph A. Burns 《Icarus》1975,25(4):545-554
The angular momentum H is plotted versus mass M for the planets and for all asteroids with known rotation rates and shapes, primarily taken from D. C. McAdoo and J. A. Burns [Icarus18, 285–293 (1973)]. An asteroid's angular momentum is derived from its rotation rate as determined by the period of its lightcurve, its shape as indicated by the lightcurve amplitude, and where possible its size as given by polarimetry or radiometry. The asteroid is assumed to be rotating about its axis of maximum moment of inertia. As previously found by F. F. Fish [Icarus7, 251–256 (1967]) and W. K. Hartmann and S. M. Larson [Icarus7, 257–260 (1967)], H is approximately proportional to M53, which shows that the asteroids and most planets spin with nearly the same rate. The very smallest asteroids on the plot deviate from the above reaction, usually containing excess angular momentum. This suggests that collisions have transferred substantial angular momentum to the smallest asteroids, perhaps causing their internal stress states to be substantially modified by centrifugal effects.The forces produced by gravitation are then compared to centrifugal effects for a rotating, triaxial ellipsoid of density 3 g cm?3. For all asteroids with known properties the gravitational attraction is shown to be larger than the centrifugal acceleration of a particle on the surface: thus the observed asteroid regoliths are gravitationally bound. Poisson's equation for the gravitational potential is investigated and it is shown by mathematical and physical arguments that any arbitrarily shaped ellipsoid with the attractive surface force boundary condition found above will have only attractive internal forces. Thus the internal stress states in asteroids are always compressive so that asteroids could be internally fractured without losing their integrity.  相似文献   

14.
D. Vokrouhlický  D. ?apek 《Icarus》2005,179(1):128-138
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric orbit of the system's center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the orbital plane constant in space and the components' rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, lightcurve observations, with their ability to track occultation and eclipse phenomena, are also very important in the case of binaries. The nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO1 in September 2006. Farther out, even more statistically significant detections are possible for several other systems including 2000 DP107, (66391) 1999 KW4 and 1996 FG3.  相似文献   

15.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous.  相似文献   

16.
The motion of fragments following a catastrophic destruction by either a normal or an oblique impact at 2.5–2.9 km sec?1 into cubic and spherical basalt targets was studied with a high-speed framing camera. Velocities at the antipodes of the targets vary as (E/M)0.75 (E = impact energy; M = target mass) and are lower than 200 m sec?1 at E/M ? 109 ergs g?1. Excluding fine-grained particles from the impact site, 70 to 80% by mass fraction of the fragments have velocities lower than twice the antipodal velocity. Comminution and ejection energies wasted in this mass fraction were a few percent of the impact energy at E/M ? 5 × 107 ergs g?1. During a catastrophic impact into asteroids some of the fragmented bodies can be reconcentrated by mutual gravitation.  相似文献   

17.
In this paper we have studied the locations and stability of the Lagrangian equilibrium points in the restricted three-body problem under the assumption that both the primaries are finite straight segments. We have found that the triangular equilibrium points are conditional stable for 0<μ<μ c , and unstable in the range μ c <μ≤1/2, where μ is the mass ratio. The critical mass ratio μ c depends on the lengths of the segments and it is observed that the range of μ c increases when compared with the classical case. The collinear equilibrium points are unstable for all values of μ. We have also studied the regions of motion of the infinitesimal mass. It has been observed that the Jacobian constant decreases when compared with the classical restricted three-body problem for a fixed value of μ and lengths l 1 and l 2 of the segments. Beside this we have found the numerical values for the position of the collinear and triangular equilibrium points in the case of some asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida and checked the linear stability of stationary solutions of these asteroids systems.  相似文献   

18.
In-situ investigation of asteroids is the next logical step in understanding their exact surface mineralogy, petrology, elemental abundances, particle size distribution, internal structure, and collisional evolution. Near-Earth asteroids (NEAs) provide us with ample opportunities for in-situ scientific exploration with lower Δv requirements and subsequently lower costs than their main belt counterparts. The ASTEX mission concept aims at surface characterization of two compositionally diverse NEAs, one with primitive and the other with a strong thermally evolved surface mineralogy. Here we present the first results of our ground-based characterization of potential ASTEX mission targets using the SpeX instrument on the NASA IRTF. Of the four potential targets we characterized, two (1991 JW and 1998 PA) have compositions similar to ordinary chondrite mineralogy. The other two targets (1994 CC and 1999 TA10) are thermally evolved objects with igneous formation histories. While 1994 CC is a triplet system and thus very challenging to orbit the V-type NEA, 1999 TA10 is the most interesting scientific ASTEX target identified so far.  相似文献   

19.
The dependence of rotational frequency on diameter, taxonomic type, and family membership is analyzed for 217 main-belt asteroids with statistically useful periods extracted from the file published by Harris and Young ((1983). Icarus54, 59–109). It is shown that for asteroids with diameters ? 120 km, mean rotational frequency increases with increasing diameter. This trend is equally present in all subsets of M-, S-, and C-type asteroids, for both family and nonfamily members alike, and cannot be accounted for by observational selection. For asteroids with diameters ? 120 km, mean rotational frequency increases with decreasing diameter; however, within this group there is a subset of asteroids with exceptionally long rotational periods. This marked change in the distribution at diameter ~ 120 km could separate primordial asteroids from their collision products. However, it is probable that the sample is biased in favor of small asteroids with short rotational periods and that the apparent increase of mean rotational frequency with decreasing diameter for small asteroids is at least partly the product of observational selection. An observational program that could test this hypothesis is described. If asteroids of any one diameter are considered, then, on average, M asteroids rotate faster than S asteroids which in turn rotate faster than C asteroids. This shows that asteroids which have been classified by their surface properties alone have different bulk properties. There is also some evidence that for all asteroidal types, of all diameters, family members rotate faster than nonfamily members.  相似文献   

20.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号