首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High temperature mass spectrometric analyses of glasses from quenched pillow rims of andesites dredged from 1170 m water depth in the northern portion of the Mariana Island arc indicate substantially less H2O (~ 1 wt.%) and more CO2 (~ 0.24 wt.%) than previously reported for volcanic arc rocks. Glass-vapor inclusions within plagioclase phenocrysts from quenched rims have CO2H2O ratios of 1:1. These results are similar to analyses of basaltic samples from the Mariana Trough (a back-arc basin). Generally, F and Cl contents are higher and S lower in the arc rocks compared to the samples from the back-arc basin. These results favor models for the production of island arc magmas which involve melting of the subducted slab, rather than just melting of the overlying mantle wedge because of the high volatile content needed to produce island arc magmas from peridotite (10–15 wt.%). The trough samples, although similar in non-volatile composition to mid-ocean ridge rocks, have much higher H2O. somewhat higher CO2 and lower S contents. Either near surface addition of voiatiles has enriched the magmas or H2O must be a more important component in the generation and evolution of back-arc basin lavas than in the genesis of mid-ocean ridge basalts.  相似文献   

2.
Archean metasedimentary rocks occur as components of the Isua supracrustals, Akilia association and Malene supracrustals of southern West Greenland. Primary structures in these rocks have been destroyed by metamorphism and deformation. Their chemistry and mineralogy is consistent with a sedimentary origin, but other possible parents (e.g. acid volcanics, altered pyroclastic rocks) cannot be excluded for some of them. There is little difference in the composition of metasedimentary rocks from the early Archean Isua supracrustals and probable correlative Akilia association. Both have a wide range in rare earth element (REE) patterns with LaNYbN ranging from 0.61?5.8. The REE pattern of one Akilia sample, with low LaNYbN, compares favourably with that of associated tholeiites and it is likely that such samples were derived almost exclusively from basaltic sources. Other samples with very steep REE patterns are similar to felsic volcanic boulders found in a conglomeratic unit in the Isua supracrustals. Samples with intermediate REE patterns are best explained by mixing of basaltic and felsic end members. Metasedimentary rocks from the Malene supracrustals can be divided into low silica (≤55% SiO2) and high silica (>77% SiO2) varieties. These rocks also show much variation in LaNYbN (0.46?14.0) and their origin is explained by derivation from a mixture of mafic volcanics and felsic igneous rocks. The wide range in trace element characteristics of these metasedimentary rocks argues for inefficient mixing of the various source lithologies during sedimentation. Accordingly, these data do not rigorously test models of early Archean crustal composition and evolution. The systematic variability in trace element geochemistry provides evidence for the bimodal nature of the early Archean crust.  相似文献   

3.
Major-element, trace-element and isotopic compositions of approximately 1200 basalts (< 53 wt. % SiO2) from intra-oceanic island arcs have been compiled to assess the nature and possible sources of primitive island-arc basalts (IAB). The chemical characteristics of IAB are examined with reference to those of mid-ocean ridge basalts (MORB) and intraplate oceanic basalts (IPB). Major-element compositions of primitive [Mg(Mg +Fe2+) > 65] IAB and MORB are similar, but differ significantly from IPB. In general, IAB do not have higher Al2O3, lower TiO2 or a lack of Fe enrichment compared to primitive MORB but many do have greater K2O contents. Differences in major- and minor-element contents between more evolved IAB and MORB result from the dominance of plagioclase + olivine crystal fractionation in MORB magmas vs. clinopyroxene + olivine controlled fractionation in IAB suites. This difference in crystallization history may be related to the higher PH2O or greater depth of crystallization of IAB magmas compared to those inferred for MORB.IAB are characteristically enriched in large-ion-lithophile (LIL) elements and depleted in high-field-strength ions (e.g., Zr, Nb and Hf) relative to normal MORB (N-type) and IPB. The enrichment of some LIL elements (e.g., Sr, Rb, Ba and Pb) relative to the rare-earth elements in IAB is difficult to explain by simple partial melting alone and suggests a multistage petrogenesis involving an LIL-enriched component. Low abundances of high-field-strength ions in evolved IAB are explicable in terms of fractional crystallization, but the cause for consistently low abundances in primitive IAB remains problematic.Island-arc lavas contain greater concentrations of volatiles and have higher CO2H2O and Cl/F ratios than either MORB or IPB, suggesting involvement of a slab-derived volatile component. However, this is not consistent with 3He4He data which indicate that only near-trench volcanics have been significantly affected by dehydration of the oceanic crust.Sr-, Nd-, Pb- and O-isotopic data, in conjunction with the trace-element data, clearly indicate that IAB are derived from heterogeneous, LIL-depleted mantle sources most similar to those which give rise to enriched MORB (E-type). The marked shift towards higher 87Sr86Sr in IAB compared to oceanic lavas with similar 143Nd144Nd values cannot be explained simply by the addition of radiogenic Sr from the slab. Variable degrees of contamination from a crustally-derived sedimentary component is consistent with the isotopic and trace-element data from a number of arcs. However, the lack of correlation between LIL/REE ratios and more radiogenic isotopic ratios suggests that this enrichment/contamination process is complex. A multi-stage petrogenetic model involving subducted oceanic crust (± sediments), dehydration/volatile transfer, and partial melting of metasomatized mantle beneath island arcs is considered the most reasonable, although least constrained, method to generate a variety of primitive IAB.  相似文献   

4.
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO1MgO ratio (0.95 with total Fe as FeO), and Mg# (100 MgMg + Fe″ = 70), sample 483-17-2-(78–83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a LaSmcn (chondrite-normalized) = 0.36, and EuSmcn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (EuSmcn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78–83) to form the least differentiated sample with Mg# = 63. The LaSmcn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher LaSmcn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower LaSmcn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78–83) is required.  相似文献   

5.
Analyses of Sr and REE in apatites from a variety of mantle-derived parageneses are used in conjunction with trace element data from the literature to investigate relationships between alkali basalts and apatite-rich materials in upper-mantle source regions. Despite difficulties in interpretation, positive P-anomalies in the hygromagmatophile element abundance patterns of some continental primary alkali basalts suggest either P-enrichment of their source or assimilation of P-rich material, or both. Amphibole- and apatite-rich xenoliths occur in several alkali-basalt provinces, and by virtue of the P and LREE enrichment represent a probable source of the P anomalies and part of the other trace element enrichments of these magmas. Incorporation of such apatite-rich materials by later primary magmas would be enhanced by the high P2O5 concentrations required to achieve apatite saturation in basaltic liquids.In the early stages of mantle diapirism an undersaturated magma, produced by slight partial melting of garnet peridotite, might fractionate as it rises to the range of amphibole stability. Hygromagmatophile element patterns of clinopyroxenite xenoliths indicate that clinopyroxene fractionation could produce P-enriched liquids which might subsequently crystallize amphibole- and apatite-rich materials now represented by xenoliths. During generation of later primary magma, apatite-rich materials might preferentially contaminate the liquids, to yield positive P-anomalies. This model requires that magmas undergo prolonged fractionation at considerable depth (~ 100 km), a process which is apparently most probable in subcontinental environments.An apatite- and zircon-bearing mica-clinopyroxenite xenolith from Matsoku provides a link between the S. African MARID suite and amphibole and apatite-rich xenoliths from various alkali basalt provinces. Unusual REE patterns (LaN < CeN < NdN, CeN/YN ?10) of apatites in this xenolith suggest a link between the MARID suite xenoliths and postulated pre-Karroo mantle metasomatism.  相似文献   

6.
Compositional differences between granulite facies rocks and equivalent amphibolite facies rocks and the observation of CO2-rich fluid inclusions in granulites, have led to the suggestion that CO2 must play a role in modifying the composition of deep continental crust. How CO2 effects this change has remained unclear. Using the thermodynamic properties of aqueous ions in a fluid of evolving CO2H2O ratio, it is possible to model the incongruent dissolution of feldspars under conditions appropriate for granulite facies metamorphism. The results demonstrate that dissolution will be strongly enhanced at high CO2H2O ratios, with ion solubilities being Na+ >K+ ? Ca++. This enhancement is compatible with the reported compositional contrasts between granulite and amphibolite facies rock, but requires large fluid volumes.To test the dissolution model, a detailed field and petrologic study was conducted in a well exposed granulite facies terrane in West Greenland. Strong correlation between fluid composition and bulk rock chemistry can be documented; CO2-rich regions contain rocks which consistently have low aNa2OaCaO ratios, while H2O-rich regions consistently have high aNa2OaCaO ratios. Magnetite rims on sulfide grains are ubiquitous in high ?Co2 regions and are absent in high ?H2O regions, and they provide evidence that CO2 was introduced into the region. These correlations and observations are predictable from the properties of the dissolution process. These considerations, along with observations regarding graphite petrogenesis, provide strong arguments that the total fluid volume interacting with the rock during metamorphism was very large, in some cases equaling or exceeding total rock volume. Such large fluid volumes can lead to significant compositional modification of the crust, and will mask the original protolith chemistry. Such processes should lead to Ca- and Al-enriched, Na-, K-, S- and Si-depleted residues in the deep crust.  相似文献   

7.
Megacrysts and polymineralic fragments of extraordinary diversity from a Tertiary monchiquitic dyke of Ubekendt Ejland comprise three groups: (1) Cr-diopside-fassaitic diopside + olivine, Fo90.5?81.5 + CrAl spinels. (II) Fassaitic salite-ferrisalite + KTi-pargasite-ferropargasite + apatite + AlTi-magnetite, (III) Scapolite + hyalophane + potassium feldspar + nepheline + analcime. By comparison with mineralogy and phase relations in the host rock and experimental data from alkaline rocks the megacrysts are related to a sequence of crystallization from primitive monchiquitic to potassic phonolitic magmas rich in H2O and CO2 at 5–11 kb. Group I megacrysts formed at temperatures of 1300-1150°C and group II between ? 1150–?800°C and fo2 < 10?9 bar at the latter temperature. High Pco2 may have stabilized the scapolite in the more evolved liquid and K-feldspar and nepheline began to crystallize at ca. 800°C possibly together with the ferrisalite.  相似文献   

8.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

9.
Basaltic glasses included in olivine phenocrysts from Kilauea volcano contain concentrations of H2O, CO2, and S similar to glassy Kilauean basalt dredged from the deep sea floor and greater than vesicular, subaerial Kilauean basalt. Our result contrasts with earlier reports that inclusions of basaltic glass in phenocrysts have little or no H2O and large ratios of CO2H2O. Our analysed inclusions of glass are larger than 100 micrometers thick and similar in chemical composition to the host glass surrounding the olivine crystals indicating that the trapped melts are representative of the bulk liquid from which the crystals grew. Crystallization of about 2–8% of olivine from the melts after they were trapped is indicated by slight departures from the experimentally established equilibrium distribution of Mg and Fe between olivine and liquid. The measured concentrations of CO2 correspond to phenocryst crystallization pressures of about 1.3 kbar for a subaerial basalt and about 5 kbar for a submarine basalt, consistent with geophysical models of Kilauea volcano. The compositions of volcanic gas predicted from our analyses are consistent with restored compositions of actual Kilauean gases. The rate of sulfur emission predicted from our analyses is greater than the sulfur dioxide emission rate observed during repose, but probably consistent with total degassing including eruptive episodes. The concentrations of H2O, K2O, Cl, and P in parental Kilauean basalt can be derived from upper mantle phlogopitic mica, pargasitic amphibole and apatite with compositions close to those of natural primary minerals in ultramafic xenoliths from continental kimberlites, or solely from apatite and phlogopitic mica with H2OK2O near 0.47 ± 0.03, slightly higher than the range of values reported. The amounts of phlogopitic mica and pargasitic amphibole contributing volatiles to Kilauean tholeiite is about 10 percent by mass of the parental liquid, or about 5% if the source does not include amphibole. In view of an estimated 20% of partial melting of mantle source rock to produce Kilauean tholeiites, there may be about 2 weight percent of mica plus amphibole in part of the mantle beneath Kilauea, or about 1 weight percent of phlogopitic mica if amphibole is absent.  相似文献   

10.
Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2OAl2O3 = 1.6–2.6), are ultrapotassic (K2ONa2O = 9.6–150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2OCO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite.Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected.  相似文献   

11.
Calibration of five gas geothermometers is presented, three of which used CO2, H2S and H2 concentrations in fumarole steam, respectively. The remaining two use CO2H2 and H2SH2 ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were calculated in steam formed by adiabatic boiling of this water to atmospheric pressure to obtain the gas geothermometry functions. It is shown that the concentrations of CO2, H2S and H2 in geothermal reservoir waters are fixed through equilibria with mineral buffers. At temperatures above 230°C epidote + prehnite + calcite + quartz are considered to buffer CO2. Two buffers are involved for H2S and H2 and two functions are, therefore, presented for the geothermometers involving these gases. For waters containing less than about 500 ppm chloride and in the range 230–300°C pyrite + pyrrholite + epidote + prehnite seem to be involved, but pyrite + epidote + prehnite + magnetite or chlorite for waters above 300°C and waters in the range 230–300°C, if containing over about 500 ppm.The gas geothermometers are useful for predicting subsurface temperatures in high-temperature geothermal systems. They are applicable to systems in basaltic to acidic rocks and in sediments with similar composition, but should be used with reservation for systems located in rocks which differ much in composition from the basaltic to acidic ones. The geothermometry results may be used to obtain information on steam condensation in upflow zones, or phase separation at elevated pressures.Measured aquifer temperatures in drillholes and gas geothermometry temperatures, based on data from nearby fumaroles, compare well in the five fields in Iceland considered specifically for the present study as well as in several fields in other countries for which data were inspected. The results of the gas geothermometers also compare well with the results of solute geothermometers and mixing models in three undrilled Icelandic fields.  相似文献   

12.
13.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

14.
Diopside-melt and forsterite-melt rare earth (REE) and Ni partition coefficients have been determined as a function of bulk compositions of the melt. Available Raman spectroscopic data have been used to determine the structures of the melts coexisting with diopside and forsterite. The compositional dependence of the partition coefficients is then related to the structural changes of the melt.The melts in all experiments have a ratio of nonbridging oxygens to tetrahedral cations (NBOT) between 1 and 0. The quenched melts consist of structural units that have, on the average, 2 (chain), 1 (sheet) and 0 (three-dimensional network) nonbridging oxygens per tetrahedral cation. The proportions of these structural units in the melts, as well as the overall NBOT, change as a function of the bulk composition of the melt.It has been found that Ce, Sm, Tm and Ni crystal-liquid partition coefficients (Kcrystal?liqi = CcrystaliCliqi) decrease linearly with increasing NBOT. The values of the individual REE crystal-liquid trace element partition coefficients have different functional relations to NBOT, so that the degree of light REE enrichment of the melts would depend on their NBOT.The solution mechanisms of minor oxides such as CO2, H2O, TiO2, P2O5 and Fe2O3 in silicate melts are known. These data have been recast as changes of NBOT of the melts with regard to the type of oxide and its concentration in the melt. From such data the dependence of crystal-liquid partition coefficients on concentration and type of minor oxide in melt solution has been calculated.  相似文献   

15.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

16.
Direct Pco2 measurements on water samples from several CO2-charged warm springs are significantly higher than Pco2 values calculated from field pH and alkalinity (and other constituents). In addition, calcite saturation indices calculated from field pH and solution composition indicated supersaturation in samples which, on the basis of hydrogeologic concepts, should be near saturation or undersaturated. We attribute these discrepancies to uncertainties in field pH, resulting from CO2 outgassing during pH measurement. Because samples for direct Pco2 measurement can be taken with minimal disturbance to the water chemistry, we have used the measured Pco2 to back calculate an estimate of the field pH and the carbon isotopic composition of the water before outgassing. By reconstructing water chemistry in this way, we find generally consistent grouping of δ13C, pH, and degree of calcite saturation in samples taken from the same source at different times, an observation which we expect based on our understanding of the hydrogeology and geochemistry of the ground-water systems. This suggests that for very careful geochemical work, particularly on ground-waters much above ambient temperature, Pco2 measurements may provide more information on the system and a better estimate of its state of saturation with respect to carbonate minerals than can field measurements of pH.  相似文献   

17.
The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low (87Sr86Sr)I], post-kinematic granites [negative Eu-anomalies, high (87Sr86Sr)I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics.REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher LaNYbN. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.  相似文献   

18.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

19.
The Monteregian Hills and younger White Mountain alkaline intrusions were emplaced into the Cambro-Ordovician sediments of the St. Lawrence Lowlands and the folded and thrusted Lower Paleozoic sequence of the Appalachian orogen. Age relations indicate that there is a fine-scale structure to the igneous activity, with slightly undersaturated to critically saturated rocks emplaced between 141 and 128 Ma and strongly undersaturated rocks emplaced between 121 and 117 Ma.Sr and Pb isotopic data for the mantle-derived alkali picrite, alkali olivine basalt and basanite magmas, indicate derivation from a depleted mantle similar to that which produces present-day oceanic island basalts. For the most isotopically primitive samples, decay-corrected 87Sr86Sr = 0.7030–0.7037, 206Pb204Pb = 19.05–19.72, 207Pb204Pb = 15.56–15.65, and 208Pb204Pb = 38.64–39.26. On Pb-Sr isotope correlation diagrams the data define trends similar to those for MOR basalts, implying mantle heterogeneity which requires the presence of a component enriched in radiogenic Pb relative to Sr. The interaction of these isotopically primitive magmas with the crust can be defined in terms of a three component system: depleted mantle-Grenville age crust-Lower Paleozoic age crust. The granitic magmas were apparently derived from the Lower Paleozoic crust of the Appalachian orogen.For the mantle-derived magmas, Th/U ratios vary from 2.5 (estimated ratio for MORB source) to 5.1, with the mean value near that of the bulk earth. The variations in Th/U suggest mantle heterogeneity on a local scale, and the high Th/U of some samples suggests that the mantle was enriched in incompatible elements shortly before melting. The magmas derived by partial melting of the crust have Th/U of 3.3 to 8.7, and the higher ratios are associated with rocks crystallized from magmas that originated by melting of Lower Paleozoic sediments.The Sr and Pb isotopic data support the conclusion of Bellet al. (1982) that the subcontinental mantle under eastern Canada underwent a Precambrian depletion event. This depleted mantle apparently extends under the White Mountain province and is isotopically similar to the mantle which gives rise to oceanic island basalts. In contrast, Pb isotopic ratios for the New England Seamount chain (TARAS and HART, 1983), which apparently represents the oceanic extension of this magmatic activity, are significantly more radiogenic. It is possible that a mantle plume provided the heat energy, and perhaps metasomatic fluids, to trigger melting in the subcontinental mantle, whereas in the case of the oceanic extension the plume directly contributed to the observed magmatism, as reflected in the more radiogenic Pb ratios.  相似文献   

20.
Chlorine has a higher solubility in basaltic magmas than other volatiles. A theoretical degassing model predicts that less than 10% of the chlorine originally present in the magma is lost to the atmosphere during surface degassing. This prediction is born out by strong correlation between chlorine and nonvolatile elements in samples from recent volcanic eruptions in Iceland. It is concluded that the chlorine content of subaerial basaltic lavas is proportional to the chlorine content of the magmas. Assuming a roughly constant ratio between chlorine and water in the magmatic gas phase and assuming further that this ratio approximates the ClH2O ratio in sea water and sediments it is possible to assign each basaltic magma a fixed amount of water. The figures thus obtained (0.3–1.2% H2O) are identical with previously assumed water contents of basaltic magmas.The implied water contents of the melts are discussed in terms of derivation from hydrous mantle phases. It is concluded that such phases can supply only a fraction of the assumed water content, the rest is derived from an additional volatile source in the mantle. The mantle source giving rise to alkali basalts in Iceland has a lower content of volatiles than the tholeiite source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号