首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A study was undertaken to determine the chronology, petrogenesis and relationships among the shergottites, Shergotty and Zagami and the unique achondrite ALHA77005. These meteorites are the product of a variety of complex processes.Petrogenesis: Chondrite-normalized abundance patterns of Shergotty and Zagami are very similar and show pronounced depletions of both the light REE (La-Nd) and heavy REE (Dy-Lu) relative to Sm-Gd. These characteristic depletions are even more pronounced for ALHA77005. The light REE depletion is qualitatively consistent with the presence of cumulus pyroxene and/or olivine in these meteorites, but trace element models show that the parental magmas of all three meteorites were probably also light REE depleted. Both trace element model calculations and combined Rb-Sr and Sm-Nd isotopic systematics show that the meteorites could not have been co-magmatic nor can ALHA77005 be representative of the source material of the shergottites. Light REE depletion of the parental magmas also implies light REE depletion of the source material. The Sm-Nd systematics of the shergottites require a time-averaged sub-chondritic (light REE enriched) Sm-Nd ratio since 4.6 AE ago. The Sm-Nd systematics of ALHA77005 permit a time-averaged super-chondritic (light REE depleted) Sm/Nd ratio if its crystallization age is less than TICE = 0.72 AE.Chronology. Rb-Sr internal isochrons for all three meteorites and a Sm-Nd internal isochron for Zagami are concordant at ~ 180 Myr. 39Ar-40Ar plateau ages of Shergotty and Zagami maskelynite are ~250–260 Myr. These ages apparently reflect resetting of these isotopic systems by shock metamorphism which converted the feldspar to maskelynite. The concordance of these ages suggests a single shock event during which the meteorites were in close physical proximity. The time of this event is most precisely given by the Rb-Sr age of 180 ± 4 Myr for Zagami.The crystallization ages of the meteorites were not precisely determined. Extreme upper limits are determined by Sm-Nd model ages relative to an eucrite initial 143Nd144Nd = 0.505835 at 4.6 AE ago. These model ages for Shergotty, Zagami and ALHA77005 are 3600, 3500 and 2850 Myr, respectively. The Sm-Nd whole rock age of 1340 ± 60 Myr for the three meteorites gives the crystallization age if the Sm/Nd ratios of the precursor materials were always the same. We consider this 1340 Myr age as a “best estimate” upper limit. “Best estimate” lower limits for Shergotty and Zagami are taken from the average 39Ar-40Ar ages of 1200 and 900 Myr of pyroxene separates. The average 39Ar-40Ar age of a whole rock sample of ALHA77005 was 1600 Myr and can be partitioned between a low temperature (feldspar) phase and a high temperature (olivine + pyroxene + inclusions) “phase”. The average apparent 39Ar-40Ar age of the low temperature phase is ~1050 Myr, which is chosen as the “best estimate” lower limit to the age. The crystallization ages of Shergotty, Zagami and ALHA77005 probably lie within the ranges of 1200–1300, 900–1300 and 1000–1300 Myr, respectively. The Rb-Sr whole rock age of 4400 ± 400 Myr and single-stage BABI model ages of ~4800–5100 Myr are interpreted as reflecting differentiation of the parent body at ~4600 Myr ago.The complex geochemical and isotopic evolution recorded by these meteorites suggests a geologically active parent body capable of sustaining melting at two or more epochs in its history.  相似文献   

3.
Excess 40Ar in biotite from some relatively anhydrous charnockitic rocks in the Appalachian Piedmont indicates limited mobility of argon. Biotite from the Arden pluton of the granulite-facies Wilmington Complex apparently formed as a retrograde product at the expense of pyroxene and K-feldspar. Rb-Sr ages of biotite from all rocks are approximately 365 Myr. The same micas have apparent K-Ar ages which range from about 365–590 Myr, six of which clearly exceed the Sr isotope whole-rock date of 500 Myr. They contain variable amounts of excess40Ar incorporated during crystallization or recrystallization of biotite at about 365 Myr ago. None of the other minerals appears to contain significant amounts of excess argon. The K-Ar apparent ages show strong, positive correlation with whole-rock K concentrations. These relations yield a correlation between excess argon in the biotite phase and rock potassium. This suggests that excess 40Ar in biotite is of local derivation and is due to an imprint of the local argon activity. If the amount incorporated is roughly proportional to the prevailing argon partial pressure then substantial differences in pAr existed. Argon did not have a uniform chemical potential over large rock volumes. Analysis of closely spaced samples suggests different argon activity over the scale of less than 10m. This implies restricted transport of Ar and is probably due to very low effective permeability of the anhydrous assemblages.  相似文献   

4.
40Ar-39Ar age spectra have been measured on plagioclase separates from three basaltic clasts (A, B, C), a pyroxene separate from clast B, and a total sample of a fourth basaltic clast (ρ) from the Kapoeta achondritic meteorite. The Ar data show that three of the four clasts crystallized ≥4.5 AE ago. Xe measurements indicate all four formed within a 0.1 AE period (Huneke, et al., 1977, Lunar Science VIII, pp. 484–486). Three clasts have suffered various degrees of 40Ar loss since that time. The times of 40Ar degassing do not cluster about a single time analogous to the lunar cataclysm. The survival of ≥4.5 AE ages contrasts with the general absence of ages ≥4.0 AE on the moon.The Ar retention age of clast B of ≥4.57 AE is atypically older than the Rb-Sr age of 3.6 AE (Papanastassiouet al., 1974, Lunar Science V, p. 583). The 3.5 AE Ar age of clast A is distinctly younger than the Rb-Sr age of 3.9 AE (Papanastassiou et al., 1974). The K-Ar and Rb-Sr systems are clearly not equivalent dating techniques in these instances.The combined evidence of Ar, Xe and Rb-Sr studies suggests the period of volcanism on the Kapoeta parent planet was restricted to the first ~0.2 AE of solar system history. The subsequent thermal metamorphic histories recorded in each of the four clasts after formation are distinctly different. The clasts must have existed as independent fragments at least as recently as 3.5 AE ago. The cosmic ray exposure ages of all the four clasts are similar (~ 3 Myr), and are not significantly different from that of the bulk meteorite. The clasts spent essentially all of the time prior to the formation of Kapoeta at depths greater than a few meters.  相似文献   

5.
The noble gases He, Ne, Ar, Kr and Xe and also K and Ba were measured in the Apollo 11 igneous rocks 10017 and 10071, and in an ilmenite and two feldspar concentrates separated from rock 10071. Whole rock K/Ar ages of rocks 10017 and 10071 are (2350 ± 60) × 106 yr and (2880 ± 60) × 106 yr, respectively. The two feldspar concentrates of rock 10071 have distinctly higher ages: (3260 ± 60) × 106 yr and (3350 ± 70) × 106 yr. These ages are still 10 per cent lower than the Rb/Sr age obtained by Papanastassiouet al. (1970) and some Ar40 diffusion loss must have occurred even in the relatively coarse-grained feldspar.The relative abundance patterns of spallation Ne, Ar, Kr and Xe are in agreement with the ratios predicted from meteoritic production rates. However, diffusion loss of spallation He3 is evident in the whole rock samples, and even more in the feldspar concentrates. The ilmenite shows little or no diffusion loss. The isotopic composition of spallation Kr and Xe is similar to the one observed in meteorites. Small, systematic differences in the spallation Kr spectra of rocks 10017 and 10071 are due to variations in the irradiation hardness (shielding). The Kr spallation spectra in the mineral concentrates are different from the whole rock spectra and also show individual variations, reflecting the differences in target element composition. The relative abundance of cosmic ray produced Xe131 differs by nearly 50 per cent in the two rocks. The other Xe isotopes show no variations of similar magnitude. The origin of the Xe131 yield variability is discussed.Kr81 was measured in all the samples investigated. The Kr81/Kr exposure ages of rocks 10017 and 10071 are (480 ± 25) × 106 yr and (350 ± 15) × 106 yr, respectively. Exposure ages derived from spallation Ne21, Ar38, Kr83 and Xe126 are essentially in agreement with the Kr81/Kr ages. The age of rock 10071 might be somewhat low because of a possible recent exposure of our sample to solar flare particles.  相似文献   

6.
Silicate inclusions from two IIE iron meteorites were dated by the I-Xe and 40Ar-39Ar techniques. Weekeroo Station, a ‘normal’ IIE iron, shows no loss of radiogenic 40Ar at low temperature, and the well-defined 40Ar-39Ar plateau yields an age of 4.54 ± 0.03 Byr. The xenon data define a good I-Xe correlation with an age of +10.9 ± 0.5 Myr relative to Bjurböle [the monitor error (±2.5 Myr) is not included].^Despite its relatively young age, Weekeroo Station's (129Xe132Xe)trappad ratio (= 0.84 ± 0.05) lies significantly below the solar value. Netschaëvo silicate has a chondritic composition, unlike ‘normal’ IIE silicate which is more differentiated. Nevertheless Netschaëvo gives a 40Ar-39Ar plateau-age of only 3.79 ± 0.03 Byr, with the xenon data failing to define an I-Xe isochron.Only irons from the IAB and IIE groups contain silicate inclusions, but these two groups differ in many other respects, mostly suggesting that IAB meteorites are more primitive. The I-Xe chronology supports this suggestion inasmuch as Weekeroo Station formed well after (8–15 Myr) IAB silicates. In terms of Scott and Wasson's (1976) model, ages for Weekeroo Station date the shock event which formed ‘normal’ IIE irons by mixing the low-melting fraction of the parent silicate with shock-liquefied metal. Scott and Wasson's suggestion that Netschaëvo represents IIE parent material, however, is contradicted by Netschaëvo's 3.8 Byr age.The four silicate-bearing IIE irons which have now been dated can be subdivided into distinct pairs: Weekeroo Station and Colomera formed near the beginning of the solar system, while Netschaëvo and Kodaikanal both formed only 3.8 Byr ago. A review of other properties of these meteorites generally support this subdivision.This work underscores the complexity of the history of IIE meteorites; in particular, an adequate model must account for the formation of two IIE irons at 3.8 Byr without disturbing rare gases in Weekeroo Station. All formation models are quite speculative, but the one which seems best to fit the available evidence postulates two parent bodies: the 3.8 Byr old silicate formed on one parent body, all other IIE material resided in a separate body, and subsequent collision(s) mixed the young silicate with IIE metal.  相似文献   

7.
While the offshore post‐Caledonian extensional history of the north Norwegian passive margin is well constrained, the tectonic relationship between onshore and offshore regions is less clear because of limited age constraints on the timing of rifting onshore. 40Ar/39Ar dating of K‐feldspar from hydrothermally altered fault rocks in a Precambrian gneiss complex in northern Norway was used to study the timing of extensional faulting onshore. In addition, 40Ar/39Ar dating of K‐feldspar from the host rock provided insight into the regional rock cooling history prior to brittle deformation. Results indicated a dominant Late Permian–Early Triassic (~265–244 Ma) faulting event and found no evidence for later reactivation, which has been documented offshore. The region cooled to below the closure temperature for 40Ar/39Ar K‐feldspar in the Carboniferous to Early Permian, prior to the main brittle faulting event. 40Ar/39Ar dating of fault zone K‐feldspar products provided a means to date brittle faulting events.  相似文献   

8.
Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data o  相似文献   

9.
Silicate and troilite from IAB iron meteorites were dated by the 40Ar-39Ar technique. Silicate from four IAB meteorites gave well-defined apparent-age plateaus which accounted for 71–99% of the released 39Ar. At low temperatures, only Copiapo showed appreciable loss of 40Ar, while Mundrabilla and Woodbine released excess 40Ar. The plateau ages are: 4.50 Byr for Copiapo, 4.57 Byr for Mundrabilla, 4.57 Byr for Woodbine, 4.54 Byr for unetched Pitts, and 4.57 Byr for etched Pitts; the 1σ error in each case is ± 0.03 Byr. A poorly-defined age plateau for Landes gives an age of 4.48 Byr, while the total K-Ar age (4.55 Byr) is significantly higher. The average (40Ar/36Ar)trapped ratio for all silicate samples is 0.4 ± 0.4.Simple and undisturbed K-Ar systems are rare for meteorites, yet it appears to be a common feature for IAB silicates. In addition, plateau ages of IAB silicates are as old or older than the mean age of unshocked chondrites (4.47 Byr).Troilite samples yielded complex patterns which were evaluated via 40Ar/36Ar vs 39Ar/36Ar plots. Data for Pitts troilite are consistent with silicate and troilite retaining Ar at about the same time initially, but then 4.25 Byr ago nearly all the Ar in troilite was redistributed. The 700–1000°C points for Mundrabilla troilite define a line which gives an age of 6.2 Byr and (40Ar/36Ar)trapped = 42. This line may be an artifact, perhaps produced by homogenization of Ar and K.Approximate estimates of cosmic-ray exposure ages are 240 Myr for Landes, 130 Myr for Copiapo, 190 Myr for Woodbine, 170 Myr for Mundrabilla troilite, and 60 Myr for Pitts troilite.The I-Xe study of these same samples revealed a good correlation between well-defined I-Xe ages of silicates and Ni contents of metal (Niemeyer, 1979). The poorer resolution of the 40Ar-39Ar technique hampers a similar evaluation; nevertheless, plateau ages of the silicates suggest a systematic trend with Ni contents.  相似文献   

10.
Rb-Sr and Pb/Pb whole rock isochrons on the Qôrqut Granite Complex yield ages of 2530 ± 30 Myr (initial87Sr86Sr = 0.7081 ± 0.0008) and 2580 ± 80 Myr respectively. A model relating initial Sr and Pb isotopic compositions of the Qôrqut granites to the Sr and Pb isotopic compositions of the Amîtsoq gneisses (ca. 3700 Myr) and Nûk gneisses (ca. 2900 Myr) at 2550 Myr ago, as well as Sr and Pb contents of the gneiss units, suggests that between 40 and 50% of the Qôrqut granite magma was generated by partial melting of Amîtsoq gneisses, and the remainder by partial melting of Nûk gneisses.  相似文献   

11.
The main rock types in the area north of the Frederikshåbs isblink are streaky gneisses, massive tonalites and ‘supracrustals’. The gneisses are thought to be the parent rocks of the tonalite and can be seen to merge into tonalite across a narrow zone of nebulite. Rb-Sr whole rock points from samples of gneiss and tonalite fall on a common isochron with an age of 2662 ± 116 m.y. (2σ) and initial ratio of 0.7032 ± 0.0008 (2σ) (half-life of 87Rb = 50 b.y.). The uncertainties in the isochron could mask small age and initial ratio differences between the gneiss and tonalite. However, our present interpretation is that the isochron reflects a homogenization of Sr isotopes within and between the two rock types. The presence of two out of four K-feldspar points on the whole rock isochron is interpreted as evidence that the K-feldspar became closed to Sr isotope migration at the same time as the whole rocks. Subsequent local isotopic disturbance has resulted in a minor loss of radiogenic strontium from two of the samples. The interpretation of the K-feldspar as a product of the epidoteamphibolite facies metamorphism allows the conclusion that the whole rock-K-feldspar isochron is recording a Sr isotopic homogenization during this event and is not related to the formation of the gneiss or the tonalite. Rb-Sr closure ages of ca. 2515 m.y. for muscovite and ca. 1950 m.y. for biotite could be recording separate isotopic disturbances or the cessation of strontium isotope migration as the minerals cooled through their characteristic blocking temperatures. Zircons from both the gneiss and the tonalite have igneous morphological features. Their U-Pb systems are complex, however, and suggest a multistage history of isotopic disturbance. Whereas the zircon U-Pb and whole rock Rb-Sr results suggest a maximum age of approximately 3000 m.y. for the parent rocks of the gneiss and tonalite they do not entirely exclude the possibility that the rocks represent older crust in which the isotopic systems have been almost completely reset ca. 2700 m.y. ago.  相似文献   

12.
The geochronology and genesis of the Qingyang batholith were investigated using40Ar/39Ar and Rb-Sr isotopic techniques. The Qingyang is a composite batholith consisting of two major rock types granodiorite and granite in the Yangtze fold belt.40Ar/39Ar spectra for biotite and amphibole separates are internally concordant. The concordance of the minerals and spectra indicate no thermal disturbance of the ages, and rapid cooling of the rocks. The granodiorite has an age of 137.6±1.4 m.y. and the granite 122.7±1.2 m.y. Whole-rock Rb-Sr analysis yields ages consistent with the40Ar/39Ar dates. Thus, the Qingyang batholith was formed in two major stages in the late Jurassic and early Cretaceous. The batholith is not Triassic as was previously proposed. Special40Ar/39Ar analysis of two granodiorite samples has precisely documented a 1.0 m.y. apparent age difference between these samples. Several factors could account for this difference, but different emplacement times seem most convincible. The granodiorite and granite show little variation in initial87Sr/86Sr ratio (about 0.7085). The high initial Sr ratios suggest that the magmas were formed by anatexis of older crustal materials.  相似文献   

13.
刘驰  穆治国 《地质科学》1995,30(4):329-337
在利用脉冲显微激光探针40Ar/39Ar定年技术测定标准样品的J值和年龄适用范围的基础上,研究了黑龙江省嫩江县北部多宝山斑岩铜矿区水热成因矿物的年代学。结果表明,高钾含量的水热蚀变矿物适合于激光探针的表面微区测定,并且可以克服水热蚀变矿物中的39Ar “反冲”丢失对年龄结果的影响。矿区的岩浆-水热事件主要有两期,分别为253-220Ma和184-162Ma,前者代表了成矿时代,后者反映出由成矿期后岩浆活动所引起的水热叠加事件。  相似文献   

14.
A study was undertaken to determine the chronology of a pristine granite clast (1062) from Apollo 14 breccia 14321 using Rb-Sr, Sm-Nd and 39Ar-40Ar methods. The genesis of the granite as constrained by the isotopic results and trace element characteristics is discussed.Chronology: The Rb-Sr internal isochron is slightly disturbed and yields an age of 4.09 ± 0.11 AE (λ(87Rb) = 0.0139 AE?1) and an imprecise initial I(Sr) = 0.702 ? .008. If two data are excluded, the age becomes 4.13 ± 0.03 AE and I(Sr) = 0.698 ? .003. The whole rock and mineral separates are extremely radiogenic; they yield model ages which are relatively well-defined. The average model age is 4.12 ± 0.03 AE (relative to BABI = 0.69898). The Sm-Nd internal isochron is also slightly disturbed and gives an age of 4.11 ± 0.20 AE (λ(147Sm) = 0.00654 AE?1). The 39Ar-40Ar average age of the non-magnetic fraction of the sample yields a slightly younger age of 3.88 ± 0.03 AE (K-Ar constants from Steiger and >a?, 1977). The concordancy of Rb-Sr and Sm-Nd internal isochrons with the Rb-Sr model age strongly suggests that the granitic clast formed at 4.1 AE ago in the shallow crust and was later excavated and brecciated about 3.88 AE ago.Petrogenesis: Isotopic and trace element data of the lunar granite show large K/La and Rb/Sr fractionations, small Sm/Nd fractionation and the distinct V-shaped REE distribution pattern at the time of crystallization. A two-stage model involving crystal fractionation followed by silicate liquid immiscibility (SLI) is proposed for lunar granite genesis. We propose that the granite can be the immiscible acidic liquid produced by SLI from a residual liquid which underwent fractionation of ca, 3% of phases with REE distribution coefficients similar to those of phosphate minerals from a highly evolved parental magma with REE contents about twice those of the 15405,85 quartz monzodiorite (QMD).The extreme scarcity of lunar granitic samples and their young formation ages suggest that they are probably not directly crystallized from the differentiation of the primordial magma ocean. Our isotopic results and trace elements data from other workers suggest that granites, QMD and probably Mggabbronorites may be genetically related and may have formed in a plutonic environment similar to gabbro-granophyre associations in terrestrial layered intrusions such as the Skaergaard Intrusions.  相似文献   

15.
The Rameka Gabbro, emplaced 367 Ma ago, experienced a well documented reheating on intrusion of the Separation Point Batholith 114 Ma ago. 40Ar39Ar age spectrum analyses of hornblende from the Rameka Gabbro show diffusion gradients which provide information on the 40Ar boundary concentration during reheating.Three samples of hornblende exhibit age spectra that conform to a model of 40Ar loss by diffusion, implying a zero 40Ar boundary concentration during heating. The calculated 40Ar loss from these samples, together with a model of heat flow in the aureole, provide estimates of diffusion coefficients of 40Ar in Mg-rich hornblende which correspond to an activation energy, E, of ~60 kcal-mol?1 and a frequency factor. D0, of ~ 10?3 cm2-sec?1. When combined with laboratory diffusion results, these data yield a well defined diffusion law (E = 63.3 ± 1.7 kcal-mol?1, D0 = 0.022 +0.048?0.010cm2-sec?1).The age spectra of the eight other samples record steep gradients of excess 40Ar over the first few percent of gas release. Although this effect causes high apparent conventional K-Ar ages, the plateau segments of many sampes still record the crystallization age of 367 ± 5 Ma. These measurements show that the excess 40Ar phase developed locally in the intergranular regions of the gabbro, following intrusion of the batholith. on time scales that varied from 104 to 106years. The minimum average 40Ar36Ar ratio of this component was found to be 1300 ± 400. The partial pressure of Ar was at least 10?2 bars in some places.A single 40Ar39Ar age spectrum analysis of plagioclase reveals a ‘saddle-shaped” release pattern with a minimum at 140 Ma.In conjunction with theoretical diffusion models and a diffusion law, 40Ar39Ar age spectrum analysis of hornblende that has experienced a post-crystallization heating can provide close estimates of the maximum temperature of the thermal event as well as both age of crystallization and reheating.  相似文献   

16.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

17.
We present the results of physical properties, petrography, bulk chemistry, mineral compositions, phase relations modelling and Noble gases study of the meteorite El Pozo. The petrography and mineral compositions indicate that the meteorite is an L5 chondrite with a low shock stage of S2-S3. Heterogenous weathering was preferentially along shock structures. Thermobarometric calculations indicate thermal equilibrium conditions between 768?°C and 925?°C at ~4 to 6?kb, which are substantially consistent with the petrological metamorphism type 5. A pseudosection phase diagram is relatively consistent with the mineral assemblage observed and PT conditions calculated. Temperature vs. fO2 diagram shows that plagioclase compositional stability is very sensitive to Tschermack substitution in orthopyroxene, clinopyroxene and XAn plagioclase during the high temperature metamorphic process. Based on noble gases He, Ne, Ar and K contents a cosmogenic exposure age CRE of 1.9?Myr was calculated. The 21Ne would be totally cosmogenic, with no primordial Ne. The 21Ne/22Ne value (0.97) is higher than solar value. According to the cosmogenic Ne content, we argue that El Pozo chondrite originally had a pre-atmospheric mass of 9–10?kg, which would have been produced by a later collision after the recognized collision of the L-chondrite parent body ~470?Ma ago.  相似文献   

18.
Determinations of 40Ar39Ar ages are reported for seven severely shock-heated chondrites. Shaw gives a plateau age of 4.29 Gyr. Louisville, Farmington, and Wickenburg give well-defined intercept ages of 0.5–0.6 Gyr. Orvinio, Arapahoe, and Lubbock show complex 40Ar39Ar release curves, with age minima of 0.7–1.0 Gyr. Degassing times of 0.5–1.0 Gyr are suggested for these meteorites. Most severely shocked chondrites were apparently not totally degassed of 40Ar by the event, but retained from ~ 2 to ~45% of their 40Ar. When calculated values of the diffusion parameter, Da2, for Ar are examined in Arrhenius plots, they show two distinct linear relationships, which apparently correspond to the degassing of different mineral phases with distinct KCa ratios and different average temperatures for Ar release. The experimentally determined values of Da2 for the high temperature phase of several severely shocked chondrites are ~10?7 to 10?5sec?1 for their determined shock-heating temperatures of ~950°C to ~ 1200°C. The inferred reheating temperatures, Da2 values, and fraction of 40Ar loss during the reheating event for these seven chondrites suggest post-shock cooling rates and burial depth of ~ 10?2 10?4°C/sec and ~0.5–2m, respectively. For three chondrites these cooling rates agree with those determined from Ni diffusion in metal grains: for five chondrites the cooling rates derived from 40Ar and Ni disagree by a factor of ~105. It is suggested that five of these severely shocked chondrites were part of large ejecta blankets containing hot material and cold clasts with a distribution of sizes and that the cooling rate of this ejecta appreciably decreased as a function of time.  相似文献   

19.
Main part of the Siberian Traps Large Igneous Province was formed in a short time-span at the Permo-Triassic boundary c. 250 Ma. New 40Ar/39Ar dating results for the Usol'skii dolerite sill in south-eastern part of the province indicate its probable emplacement c. 6 Myr after the main Permo-Triassic magmatic phase. Compilation of the published 40Ar/39Ar and U-Pb ages implies that basaltic and related magmatism lasted in total as long as 22–26 Myr. Therefore, similar to other large igneous provinces, magmatism of the Siberian Traps combined voluminous short-lived and less prominent long-lived events.  相似文献   

20.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号