首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk chemical compositions of matrix material in Antarctic CM chondrites and other non-Antarctic CM and CI chondrites have been determined using microprobe defocused beam techniques. These are used, along with the results of previously published mineralogical studies, to provide mass balance constraints on the relative proportions of intergrown and intermixed phyllosilicate phases in carbonaceous chondrite matrices. Results of these calculations indicate differing amounts of PCP (a mixture of approximately 25% tochilinite and 75% cronstedtite) and serpentines (Mg-rich and Fe-rich varieties in varying proportions or intermediate compositional varieties). Additional sulfide phases are also probably necessary to account for excess Ni and S. Fe/Si ratios for matrices of individual meteorites range from 1.21 to 2.77, corresponding to PCP/(PCP + SERF) ratios of 0.16 to 0.58. Progressive aqueous alteration of matrix appears to have occurred by formation of tochilinite, then cronstedtite and Mg-rich serpentine, and finally Fe-rich serpentine and sulfides. CM matrix clearly did not behave as an isolated system during alteration. CI chondrite matrices appear to contain little if any PCP; this may be a natural consequence of the absence of chondrule-associated metal, from which PCP forms, in the unaltered precursor material. These data provide a more quantitative picture of low-temperature aqueous alteration processes in carbonaceous chondrite parent bodies than has heretofore been possible from TEM studies alone.  相似文献   

2.
We present new hydrogen isotope data for separated matrix, hydrated chondrules, and other hydrated coarse silicate fragments from nine carbonaceous chondrites. These data were generated using a micro-analytical method involving stepped combustion of tens to hundreds of micrograms of hydrous solids. We also re-evaluate hydrogen isotope data from previous conventional stepped combustion experiments on these and other carbonaceous chondrites.Hydrogen isotope compositions of matrix and whole-rock samples of CM chondrites are correlated with oxygen isotope indices, major and minor-element abundances, and abundance and isotope ratios of other highly volatile elements. These correlations include a monotonic decrease in δD with increasing extent of aqueous alteration and decreasing abundances of highly volatile elements (including C, N and Ar), between extremes of ∼0‰ (least altered, most volatile rich) and −200‰ (most altered, least volatile rich). In plots involving only abundances and/or isotope ratios of highly volatile elements, CI chondrites fall on the high-δD, volatile rich end of the trends defined by CM chondrites; i.e., CI chondrites resemble the least altered CM chondrites in these respects. These trends suggest the protoliths of the CM chondrites (i.e., before aqueous alteration) contained an assemblage of volatiles having many things in common with those in the CI chondrites. If so, then the volatile-element inventory of the CI chondrites was a more widespread component of early solar system objects than suggested by the scarcity of recognized CI meteorites. Differences in volatile-element chemistry between the CI and average CM chondrites can be attributed to aqueous alteration of the latter.Previous models of carbonaceous chondrite aqueous alteration have suggested: (1) the protoliths of the CM chondrites are volatile poor objects like the CO or CV chondrites; and (2) the CI chondrites are more altered products of the same process producing the CM chondrites. Both suggestions appear to be inconsistent with hydrogen isotope data and other aspects of the volatile-element geochemistry of these rocks. We present a model for aqueous alteration of the CM chondrites that reconciles these inconsistencies and suggests revised relationships among the major subtypes of carbonaceous chondrites. Our model requires, among other things, that the water infiltrating CM chondrites had a δD value of ∼−158‰, consistent with initial accretion of CM parent bodies at ∼4 AU.  相似文献   

3.
With one exception, the low-FeO relict olivine grains within high-FeO porphyritic chondrules in the type 3.0 Acfer 094 carbonaceous chondrite have Δ17O (= δ17O − 0.52 × δ18O) values that are substantially more negative than those of the high-FeO olivine host materials. These results are similar to observations made earlier on chondrules in CO3.0 chondrites and are consistent with two independent models: (1) Nebular solids evolved from low-FeO, low-Δ17O compositions towards high-FeO, more positive Δ17O compositions; and (2) the range of compositions resulted from the mixing of two independently formed components. The two models predict different trajectories on a Δ17O vs. log Fe/Mg (olivine) diagram, but our sample set has too few values at intermediate Fe/Mg ratios to yield a definitive answer.Published data showing that Acfer 094 has higher volatile contents than CO chondrites suggest a closer link to CM chondrites. This is consistent with the high modal matrix abundance in Acfer 094 (49 vol.%). Acfer 094 may be an unaltered CM chondrite or an exceptionally matrix-rich CO chondrite. Chondrules in Acfer 094 and in CO and CM carbonaceous chondrites appear to sample the same population. Textural differences between Acfer 094 and CM chondrites are largely attributable to the high degree of hydrothermal alteration that the CM chondrites experienced in an asteroidal setting.  相似文献   

4.
The CB/CH-like chondrite Isheyevo is characterized by the absence of fine-grained interchondrule matrix material; the only present fine-grained material is found as chondritic lithic clasts. In contrast to the pristine high-temperature components of Isheyevo, these clasts experienced extensive aqueous alteration in an asteroidal setting. Hence, the clasts are foreign objects that either accreted together with the high-temperature components or were added later to the final Isheyevo parent body during regolith gardening. In order to constrain the origin and secondary alteration of the clasts in Isheyevo, we studied their mineralogy, petrography, structural order of the polyaromatic carbonaceous matter, and oxygen isotopic compositions of carbonates. Three main groups of clasts were defined based on mineralogy and petrology. Group I clasts consist of phyllosilicates, carbonates, magnetite, and lath-shaped Fe,Ni-sulfides. Group II clasts contain different abundances of anhydrous silicates embedded in a hydrated matrix; sulfides, magnetite, and carbonates are rare. With only a few exceptions, groups I and II clasts did not experienced significant thermal metamorphism. Group III clasts are characterized by the absence of magnetite and the presence of Fe,Ni-metal. In addition to aqueous alteration, they experienced thermal metamorphism as reflected by the structure of their polyaromatic carbonaceous matter. While there are some similarities between the Isheyevo clasts, CI chondrites, and the matrices of CM and CR chondrites, on the whole, the characteristics of the clasts do not match those of any of these aqueously altered meteorite classes. Nor do they match those of similar material in various types of chondritic clasts present in other meteorite groups. We conclude that the Isheyevo clasts represent fragments of previously unsampled parent bodies.  相似文献   

5.
CM chondrites are aqueously altered rocks that contain ∼9 wt% H2O+ (i.e., indigenous water) bound in phyllosilicates; also present are clumps of serpentine-tochilinite intergrowths (previously called “poorly characterized phases” or PCP), pentlandite and Ni-bearing pyrrhotite. We studied 11 CM chondrites that span the known range from least altered to most altered. We used various petrologic properties (many previously identified) that provide information regarding the degree of aqueous alteration. There are no known unaltered or slightly altered CM chondrites (e.g., rocks containing numerous chondrules with primary igneous glass). Some CM properties result from processes associated with early and intermediate stages of the alteration sequence (i.e., hydration of matrix, alteration of chondrule glass, and production of large PCP clumps). Other petrologic properties reflect processes active throughout the alteration sequence; these include oxidation of metallic Fe-Ni, alteration of chondrule phenocrysts, changes in PCP composition (reflecting an increase in the phyllosilicate/sulfide ratio), and changes in carbonate mineralogy (reflecting the development of dolomite and complex carbonates at the expense of Ca carbonate).On the basis of these parameters, we propose a numerical alteration sequence for CM chondrites. Because there are no known CM samples that display only incipient alteration, the least altered sample was arbitrarily assigned to subtype 2.6. The most altered CM chondrites, currently classified CM1, are assigned to subtype 2.0. These highly altered rocks have essentially no mafic silicates; they contain chondrule pseudomorphs composed mainly of phyllosilicate. However, their bulk compositions are CM-like, and they are closer in texture to other C2 chondrites than to CI1 chondrites (which lack chondrule pseudomorphs). Using several diagnostic criteria, we assigned petrologic subtypes (±0.1) to every CM chondrite in our study: QUE 97990, CM2.6; Murchison, CM2.5; Kivesvaara, CM2.5; Murray, CM2.4/2.5; Y 791198, CM2.4; QUE 99355, CM2.3; Nogoya, CM2.2; Cold Bokkeveld, CM2.2; QUE 93005, CM2.1; LAP 02277, CM2.0; MET 01070, CM2.0.The proposed CM numerical alteration sequence improves upon the existing scheme of Browning et al. (1996) in that it does not require a complicated algorithm applied to electron-microprobe data to determine the average matrix phyllosilicate composition. The new sequence is more comprehensive and employs petrologic subtypes that are easier to use and remember than mineralogic alteration index values.New neutron-activation analyses of QUE 97990, QUE 93005, MET 01070, Murchison and Crescent, together with literature data, confirm the compositional uniformity of the CM group; different degrees of alteration among CM chondrites do not lead to resolvable bulk compositional differences. This suggests that the textural differences among individual CM chondrites reflect progressive alteration of similar hypothetical CM3.0 starting materials in different regions of the same parent body, with minimal aqueous transport of materials over appreciable (e.g., meters) distances.  相似文献   

6.
7.
To better understand the role of aqueous alteration on the CR chondrite parent asteroid, a whole-rock oxygen isotopic study of 20 meteorites classified as Renazzo-like carbonaceous chondrites (CR) was conducted. The CR chondrites analyzed for their oxygen isotopes were Dhofar 1432, Elephant Moraine (EET) 87770, EET 92042, EET 96259, Gao-Guenie (b), Graves Nunataks (GRA) 95229, GRA 06100, Grosvenor Mountains (GRO) 95577, GRO 03116, LaPaz Ice Field (LAP) 02342, LAP 04720, Meteorite Hills (MET) 00426, North West Africa (NWA) 801, Pecora Escarpment (PCA) 91082, Queen Alexandra Range (QUE) 94603, QUE 99177, and Yamato-793495 (Y-793495). Three of the meteorites, Asuka-881595 (A-881595), GRA 98025, and MET 01017, were found not to be CR chondrites. The remaining samples concur petrographically and with the well-established oxygen-isotope mixing line for the CR chondrites. Their position along this mixing line is controlled both by the primary oxygen-isotopic composition of their individual components and their relative degree of aqueous alteration. Combined with literature data and that of this study, we recommend the slope for the CR-mixing line to be 0.70 ± 0.04 (2σ), with a δ17O-intercept of −2.23 ± 0.14 (2σ).Thin sections of Al Rais, Shi?r 033, Renazzo, and all but 3 samples analyzed for oxygen isotopes were studied petrographically. The abundance of individual components is heterogeneous among the CR chondrites, but FeO-poor chondrules and matrix are the most abundant constituents and therefore, dominate the whole-rock isotopic composition. The potential accreted ice abundance, physico-chemical conditions of aqueous alteration (e.g. temperature and composition of the fluid) and its duration control the degree of alteration of individual CR chondrites. Combined with literature data, we suggest that LAP 02342 was exposed to lower temperature fluid during alteration than GRA 95229. With only two falls, terrestrial alteration of the CR chondrites complicates the interpretation of their whole rock isotopic composition, particularly in the most aqueously altered samples, and those with relatively higher matrix abundances. We report that QUE 99177 is the isotopically lightest whole rock CR chondrite known (δ18O = −2.29‰, δ17O = −4.08‰), possibly due to isotopically light unaltered matrix; which shows that the anhydrous component of the CR chondrites is isotopically lighter than previously thought. Although it experienced aqueous alteration, QUE 99177 provides the best approximation of the pristine CR-chondrite parent body’s oxygen-isotopic composition, before aqueous alteration took place. Using this value as a new upper limit on the anhydrous component of the CR chondrites, water/rock ratios were recalculated and found to be higher than previously thought; ratios now range from 0.281 to 1.157. We also find that, according to their oxygen isotopes, a large number of CR chondrites appear to be minimally aqueously altered; although sample heterogeneity complicates this interpretation.  相似文献   

8.
Water-soluble sulfate salts extracted from six CM chondrites have oxygen isotope compositions that are consistent with an extraterrestrial origin. The Δ17O of sulfate are correlated with previously reported whole rock δ18O and with an index of meteorite alteration, and may display a correlation with the date of the fall. The enrichments and depletions for Δ17O of water-soluble sulfate from the CM chondrites relative to the terrestrial mass dependent fractionation line are consistent with sulfate formation in a rock dominated asteroidal environment, and from aqueous fluids that had undergone relatively low amounts of oxygen isotope exchange and little reaction with anhydrous components of the meteorites. It is unresolved how the oxidation of sulfide to sulfate can be reconciled with the inferred low oxidation state during the extraterrestrial alteration process. Oxygen isotope data for two CI chondrites, Orgueil and Ivuna, as well as the ungrouped C2 chondrite Essebi are indistinguishable from sulfate of terrestrial origin and may be terrestrial weathering products, consistent with previous assertions. Our oxygen isotope data, however, can not rule out a preterrestrial origin either.  相似文献   

9.
The carbonaceous chondrites are intriguing and unique in the sense that they are the only rocks that provide pristine records of the early solar nebular processes. We report here results of a detailed mineralogical, chemical, amino acid and isotopic studies of a recently observed fall at Mukundpura, near Jaipur in Rajasthan, India. Abundance of olivines in this meteorite is low and of serpentine minerals is high. FeO/SiO_2 = 1.05 in its Poorly Characterized Phases(PCP) is similar to that observed in other CM2.0 chondrites. The water content of ~9.8 wt.% is similar to that found in many other CM chondrites.Microscopic examination of matrix shows that its terrestrial weathering grade is WO but aqueous parent body alteration is high, as reflected in low abundance of identifiable chondrules and abundant remnants of chondrules(~7%). Thus, most of the chondrules formed initially have been significantly altered or dissolved by aqueous alterations on their parent bodies. The measured bulk carbon(2.3%) and nitrogen content and their isotopic(δ13C =-5.5‰, δ15N = 23.6%0) composition is consistent with CM2.0 classification probably bordering CM1. Several amino acids such as Alanine, Serine, Proline, Valine, Threonine,Leucine, Isoleucine, Asparagine and Histamine are present. Tyrosine and Tryptophan may occur in trace amounts which could not be precisely determined. All these data show that Mukundpura chondrite lies at the boundary of CM2.0 and CM1 type carbonaceous chondrites making it one of the most primitive chondrites.  相似文献   

10.
CM carbonaceous chondrites are samples of incompletely serpentinized primitive asteroids. Using position sensitive detector X-ray diffraction (PSD-XRD) and a pattern stripping technique, we quantify the modal mineralogy of CM2 chondrites: Mighei; Murray; Murchison; Nogoya and Cold Bokkeveld. There is a narrow range in the combined modal volume (vol%) of the most abundant phases Mg-serpentine (25-33%) and Fe-cronstedtite (43-50%). Cold Bokkeveld is anomalous in containing more Mg-serpentine (49-59%) than Fe-cronstedtite (19-27%). Even including Cold Bokkeveld, the range in modal total phyllosilicate is 73-79% (average = 75%). Total phyllosilicate abundance provides a non-ambiguous measure of the degree of aqueous alteration and indicates that these meteorites have all experienced essentially the same degree of aqueous alteration. This reflects pervasive hydration of matrix across CM2 samples. Apparent differences in the alteration of chondrules observed in petrographic studies represent various stages in the progression towards complete hydration of all components but are not manifest in significant differences in modal mineralogy. For all samples there is a limited range in olivine (6.9%) and pyroxene (5%) abundances. Modal abundances of the remaining identified phases also show a limited range: calcite (0-1.3%); gypsum (0-1.6%); magnetite (1.1-2.4%); pentlandite (0-2.1%) and pyrrhotite (1-3.8%).As expected, we observe a strong negative correlation in the modal abundance of anhydrous Fe-Mg silicates (olivine + pyroxene) and total phyllosilicate (Mg-serpentine + Fe-cronstedtite) consistent with the idea that phyllosilicate is forming by aqueous alteration of the anhydrous components. The negative correlation in the modal abundance between Mg-serpentine and Fe-cronstedtite indicates: (a) mineralogic transformation of Fe-cronstedtite to Mg-serpentine by fluid driven recrystallisation or (b) that these meteorites had different initial abundances of olivine and pyroxene. The observed positive correlation in the relative proportion of Mg-serpentine with increasing total phyllosilicate abundance reflects the evolution of increasingly Mg-rich phyllosilicate during aqueous alteration. Fe-cronstedtite is the dominant phyllosilicate, while CM chondrule olivines are forsteritic and will form Mg-serpentine during aqueous alteration. This implies that matrix olivine was more Fe-rich than chondrule olivine prior to aqueous alteration.  相似文献   

11.
Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta56, 1992, 2873-2897]. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r2 = 0.44) if we limit consideration to central objects with radii >35 μm; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed “mantles”; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as “primary accretionary rocks” by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).  相似文献   

12.
Phosphorus-bearing Fe and Ni sulfides represent a new type of phosphorus compounds and are characteristic accessory phases of CM chondrites. The proportions of atoms in the sulfides can be approximated by the equation (Fe + Ni)/P = 0.965 ± 0.003 (1σ) · S/P + 1.255 ± 0.036 (1σ). Sulfides with high S/P ratios are systematically richer in Fe and poorer in Ni compared with low-S/P sulfides. Their characteristic minor elements are Cr, Ca, Co, K, and Na. The contents of Cr and Ca may reach several weight percent, but their incorporation does not affect the relation between (Fe + Ni)/P and S/P. This is also true of light elements (O and H), which probably occur in the P-bearing sulfides in certain amounts. The sulfides are usually associated with schreibersite, barringerite, eskolaite, and daubreelite. A negative correlation was observed between the Fe/Ni ratios of coexisting P-bearing sulfides and phosphides. Metallic iron was never found in association with the sulfides. It can be suggested that P-bearing sulfide is a primary phase rather than a secondary alteration product formed under the conditions of the CM chondrite parent body. This phase had to be stable in the solar nebula after the formation of Ca-Al inclusions and before the condensation of Fe-Ni metal. At high temperatures, P-bearing sulfide with low Fe/Ni and S/P ratios coexists with schreibersite in the solar gas. During condensation schreibersite is replaced by barringerite, which is accompanied by a decrease in the Fe/Ni ratio of phosphides and an increase in the S/P and Fe/Ni ratios of P-bearing sulfides. Trace element data suggest that the P-bearing sulfides could be formed in the solar nebula by the sulfidization of a precursor phase of extrasolar origin.  相似文献   

13.
CM chondrites contain carbonates and other secondary minerals such as phyllosilicates, sulfides, sulfates, oxides and hydroxides that are believed to have formed by aqueous alteration reactions on their parent asteroid. We report in situ Mn-Cr isotope measurements in the highly aqueously altered CM2.1 chondrites QUE 93005 and ALH 83100 using secondary ion mass spectrometry (Cameca ims-1270 ion microprobe). The 53Cr excesses are correlated with the 53Mn/55Mn ratio and result from the in situ decay of 53Mn, a short-lived radioisotope with a half-life of 3.7 Ma. If we assume that carbonate grains in samples QUE 93005 and ALH 83100 are cogenetic, then the excesses define initial 53Mn/55Mn ratios ((53Mn/55Mn)0) of (4.1 ± 1.2) × 10−6 and (5.1 ± 1.7) × 10−6, respectively. These values are comparable to those in carbonates from other CM chondrites as reported in the literature. Initial 53Mn/55Mn ratios for calculated model isochrones for individual carbonate grains range from (3.8 ± 1.4) × 10−6 to (4.8 ± 2.1) × 10−6 for QUE 93005 and from (3.1 ± 1.6) × 10−6 to (1.3 ± 0.5) × 10−5 for ALH 83100. A possible interpretation for the ranges in (53Mn/55Mn)0 could be that alteration in individual CM chondrites was episodic and occurred over an extended period of time. However, isochrones based on the entire set of carbonate grains in each of the CM chondrites imply that the degree of aqueous alteration is roughly correlated with the age of carbonate formation in CM chondrites of different subtypes and that alteration on the CM parent asteroid started contemporaneously with or shortly after CAI formation and lasted at least 4 Ma.  相似文献   

14.
Monocarboxylic acids (MCAs) are important astrobiologically because they are often the most abundant soluble compounds in carbonaceous chondrites (CCs) and are potential synthetic end products for many biologically important compounds. However, there has been no systematic study on the effect of parent body alteration on molecular and isotopic variability of MCAs. Since MCAs in meteorites are dominated by low molecular weight (C1-C8), highly volatile compounds, their distributions are likely to be particularly sensitive to secondary alteration processes. In contrast, the aliphatic side chains of insoluble organic matter (IOM) in CCs, whose composition has been shown to be closely related to the MCAs, may be far more resistant to secondary alteration. In the present study, we determined the distributions and isotopic ratios of free and IOM-derived MCAs in six carbonaceous chondrites with a range of classifications: Murchison (CM2), EET 87770 (CR2), ALH 83034 (CM1), ALH 83033 (CM2), MET 00430 (CV3) and WIS 91600 (C2). We compare mineralogical and petrological characteristics to the MCAs distributions to better define the processes leading to the synthesis and alteration of meteoritic MCAs. Our results show that aqueous and especially thermal alteration in the parent bodies led to major loss of free MCAs and depletion of straight relative to branched chain compounds. However, the MCAs derived from aliphatic side chains of IOM are well preserved despite of secondary alterations. The molecular and isotopic similarities of IOM-derived MCAs in different chondrite samples indicate very similar synthetic histories for organic matter in different meteorites.  相似文献   

15.
High-resolution IR spectra (0.9–2.5 μm) and narrowband photometry (3.0–3.5 μm) are presented for asteroids 1 Ceres, 2 Pallas and 324 Bamberga. Laboratory experiments with hydrated minerals indicate that the 3 μm absorption feature observed on asteroids is largely due to interlayer water molecules in clay minerals, with a possible contribution from water molecules bound to salts. The depth of the 3 μm band as a function of 2.2 μm albedo is a useful measure of the amount of hydrated mineral present on these asteroids. 1 Ceres must consist mostly of a clay mineral like that in CM chondrites, with some contribution to the strength of the 3 μm band by hydrated salts. These salts, which are products of aqueous alteration, may also be responsible for Ceres' high albedo relative to other C-type asteroids. 2 Pallas must have a low abundance of hydrated minerals relative to 1 Ceres, with the bulk of its composition being spectrally featureless minerals such as the iron-free silicates in CM chondrules. 324 Bamberga probably contains clay minerals, but their abundance cannot be determined at present. The spectrum of Bamberga below 2.5 μm shows evidence for abundant magnetite, which can be a product of aqueous alteration. The presence of magnetite on Bamberga and possibly other C-type asteroids may be responsible for their low albedos. The spectra of C-type asteroids may be reconcilable with those of carbonaceous chondrites if the asteroids surfaces have undergone alteration by aqueous or other analogous processes.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(13-14):2089-2104
The carbonaceous chondrites display the widest range of oxygen isotopic composition of any meteorite group, as a consequence of the interaction of primordial isotopic reservoirs in the solar nebula. These isotopic variations can be used to identify the reservoirs and to determine conditions and loci of their interactions. We present a comprehensive set of whole-rock analyses of CV, CO, CK, CM, CR, CH, and CI chondrites, as well as selected components of some of these meteorites. A simple model is developed which describes the isotopic behavior during parent-body aqueous alteration processes. The process of thermal dehydration also produces a recognizable effect in the oxygen isotopic composition.  相似文献   

17.
TEM, HRTEM, HVEM and SEM methods, coupled with energy dispersive X-ray analysis, have been used to study the microstructure and the phases comprising the matrix of carbonaceous chondrites Murchison, Cold Bokkeveld, Nawapali and Cochabamba. A wide variety of phyllosilicate morphologies occurs in each. Very small crystals and clasts of olivine, pyroxene and other unhydrated minerals are mixed intimately with the phyllosilicates. Intergrowths of carbonates and Sulfides within the phyllosilicates also occur, as well as a ubiquitous spongey material which is difficult to characterize, but contains elementary phyllosilicate units and embryo crystals. The identifiable large crystalline phyllosilicates are principally Fe-rich serpentine-group minerals and intermediate more Mg-rich chrysotilelike group members, with characteristic ~ 7.0–7.4 Å basal layer spacings. Complex interlayered and intergrown hydrous minerals also occur associated with the spongey material, and other poorly crystalline silicates and finely divided Fe-Ni sulphides. Fe/Si and Mg/Si ratios vary on a sub-micron scale, and the morphologies of the larger phyllosilicate crystals correlate broadly with these variations. Small crystals of sodium chloride and potassium chloride have been identified, occluded within a predominantly organic mass.The matrix minerals have a multistage history of formation in which the effects of aqueous alteration are dominant. Few, if any, of matrix minerals can be unmodified nebular condensates, although some clasts and inclusions have escaped alteration and predate the alteration process.  相似文献   

18.
Matrix compositions of 32 carbonaceous chondrites have been analyzed by an electron microprobe defocussed-beam technique. Except in those chondrites that show evidence of metamorphism, matrices are compositionally similar and have correlation coefficients of +0.96 or greater. Weight per cent Mg/Si in matrices is constant (0.82 ± 0.05) but less than ratios derived from bulk analyses. Matrices in metamorphosed meteorites are Mg-depleted relative to those of other chondrites. Al Rais and Renazzo (anomalous by any classification scheme) have Mg-enriched matrices. Average matrix compositions cluster into chemical subgroups similar to those based on bulk chemical and petrographie criteria [C1, C2, C3(0), C3(V)]. C1 matrices are particularly variable in composition from point to point within the same meteorite, but points within individual breccia clasts appear to be more compositionally uniform. Cl matrices are depleted in Na, S, and Ca relative to solar and C2 matrix values, probably as a result of leaching. Matrix Ca/A1 ratios are highly variable and generally fall below the accepted meteoritic value. The only strong interelement correlation is for Fe, Ni, and S in C2 matrices, suggesting mixing of variable proportions of two components: Mg-rich phyllosilicate and a Ni-bearing chalcophile phase. The amount of magnetite associated with C2 matrix appears to vary systematically with matrix composition. Isotopic, chemical, and mineralogical constraints suggest that matrix, although appreciably altered in some meteorites, is chiefly a solar system condensation product which contains an admixture of unprocessed interstellar dust.  相似文献   

19.
To identify chemical group affinities and infer the occurrence of thermal metamorphism or aqueous alteration in their histories, we quantified 43 trace elements in the CM or CM-related Antarctic carbonaceous chondrites EET 96010, LAP 02277, MET 01070, and WIS 91600. We also analyzed LAP 02206, a CV chondrite, to add to our comparison database. We present whole-rock oxygen isotope data for LAP 02206, LAP 02277, and MET 01070 to complement our trace element results. With these data, we confirm the CV classification of LAP 02206 and CM or CM-like classification for the other four chondrites in this study. On the basis of moderately volatile element content, our results show that EET 96010 experienced open-system heating, while any heating LAP 02277 and MET 01070 may have experienced was in a chemically closed-system. WIS 91600, on a trace element basis, appears to be CM-like material. Our analyses support the idea that CM material has experienced a wide variety of post-accretionary processing.  相似文献   

20.
This paper reports the first reliable quantitative determination of the thermal metamorphism grade of a series of nine CV3 chondrites: Allende, Axtell, Bali, Mokoia, Grosnaja, Efremovka, Vigarano, Leoville, and Kaba. The maturity of the organic matter in matrix, determined by Raman spectroscopy, has been used as a powerful metamorphic tracer, independent of the mineralogical context and extent of aqueous alteration. This tracer has been used along with other metamorphic tracers such as Fe zoning in type-I chondrules of olivine phenocrysts, presolar grain abundance and noble gas abundance (bulk and P3 component). The study shows that the petrologic types determined earlier by Induced ThermoLuminescence were underestimated and suggests the following values: PT (Allende-Axtell) >3.6; PT (Bali-Mokoia-Grosnaja) ∼3.6; PT (Efremovka-Leoville-Vigarano) = 3.1-3.4; PT (Kaba) ∼3.1. The most commonly studied CV3, Allende, is also the most metamorphosed. Bali is a breccia containing clasts of different petrologic types. The attribution suggested by this study is that of clasts of the highest petrologic types, as pointed out by IOM maturity and noble gas bulk abundance. CV3 chondrites have complex asteroidal backgrounds, with various degrees of aqueous alteration and/or thermal metamorphism leading to complex mineralogical and petrologic patterns. (Fe,Mg) chemical zoning in olivine phenocrysts, on the borders of type I chondrules of porphyritic olivine- and pyroxene-rich textural types, has been found to correlate with the metamorphism grade. This suggests that chemical zoning in some chondrules, often interpreted as exchanges between chondrules and nebular gas, may well have an asteroidal origin. Furthermore, the compositional range of olivine matrix is controlled both by thermal metamorphism and aqueous alteration. This does not support evidence of a nebular origin and does not necessarily mirror the metamorphism grade through (Fe,Mg) equilibration. On the other hand, it may provide clues on the degree of aqueous alteration vs. thermal metamorphism and on the timing of both processes. In particular, Mokoia experienced significant aqueous alteration after the metamorphism peak, whereas Grosnaja, which has similar metamorphism grade, did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号