首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between lignite and soluble uranyl species have been investigated experimentally at different temperatures from 20° to 400°C. Fixation of uranyl species by lignite (45° to 250°C) and their reduction to uraninite (120° to 400°C) were observed. The fixation of uranyl species by lignite results in the formation of stable organo-uranyl compounds. The reduction of uranyl species by lignite results in a stoichiometric liberation of H+ in the solution medium and in a dehydrogenation of lignite. This dehydrogenation can be attributed to two different processes. The first is an oxidation of alcohol functional groups into aldehyde or ketone functions accompanied by a simultaneous reduction of uranyl species. The second is a dehydrogenation of hydrocarbonaceous aliphatic moieties induced by the uranium species. The molecular hydrogen produced during this process is subsequently used for an additional reduction of uranyl species.  相似文献   

2.
Fresh mid-ocean ridge basalts of varying crystallinity and an andesite were reacted with seawater and with a Na-K-Ca-Cl solution at 200–500°C and 500–1000 bar in sealed gold capsules. Waterrock mass ratios of one to three were used and durations ranged from two to twenty months. The concentrations of Fe, Mn, and reduced and oxidized sulfur species in solution reached steady state in most of the experiments at 400–500°C, but not in those at 200–300°. The concentrations of Fe and Mn were a few ppm at 200–300° and increased greatly with temperature between 300 and 500°. The low values at 200–300° are probably related to the uptake of Fe and Mn by smectite at the in situ pH, which was slightly acid at 200° and slightly alkaline at 300°. The quench pH values decreased with increasing temperature above 300°. The only reliable data for the concentration of Zn in solution were obtained at 400°, where values 1–2 ppm were found. Copper was extensively leached from basalt and andesite and was deposited as part of a Cu-Au alloy in the capsule walls or, in some experiments, as chalcopyrite.Reduced sulfur was readily leached from basalt into solution, and was also produced by the reduction of seawater sulfate by ferrous iron derived from the basalts. The proportion of seawater sulfate which was reduced in the experiments with a waterrock ratio of one varied from 5–10% at 300°C to > 95% at 500°. The rate of sulfate reduction depended on the run temperature, on the crystallinity and initial sulfur content of the rocks used as starting materials, and on the waterrock ratio. The final concentration of reduced sulfur in solution increased greatly with temperature, and generally exceeded that of Fe on a molal basis.The oxide-sulfide assemblages produced in the experiments resemble those in the basalt-seawater geothermal system at Reykjanes, Iceland, and in hydrothermally altered basalts and gabbros from the oceanic crust; they include pyrite, pyrrhotite. chalcopyrite, hematite, and probably magnetite. The particular assemblage varied systematically with the temperature, rock type, and crystallinity of each run. Anhydrite precipitated in all experiments with seawater, at all temperatures from 200–500°C. However, its persistence to the end of the runs was apparently metastable, as it should have reacted with the final solutions to produce pyrite or pyrrhotite.  相似文献   

3.
Oxidation of magnetite pellet concentrates (from LKAB, Sweden) during drying and storage was studied using thermogravimetric analysis (TGA). The Fe2+content of a standard LKAB pellet feed decreased by 0.2% during heat treatment at 105 °C for 2 days. The results indicate that magnetite concentrates of pelletizing fineness already start to oxidize to γ-hematite during drying at 105 °C, although 105 °C is recommended by ISO 7764 and ISO 3087 and given as the maximum allowable drying temperature in ISO 3082. The importance of drying time for the amount of magnetite oxidized should also be recognized, but is not mentioned in the ISO standards. The sensitivity of magnetite particles for oxidation during drying could not be predicted by measuring the BET surface area. A simple isothermal TGA run gives exact experimental data and is recommended as a standard procedure before choosing the drying temperature for magnetite concentrate samples.Oxidation during storage at room temperature was observed as well. The Fe2+content in a standard Luossavaara-Kiirunavaara (LKAB) pellet feed decreased by 0.3% Fe2+during 4 years of storage at room temperature. Oxidation during storage was completely hindered when the samples were stored in a freezer at −50 °C. Therefore, freezer storage is recommended for all magnetite reference materials. These materials are used over several years and are especially susceptible to oxidation because they are usually finely ground and high in Fe2+content. The results also show that if the magnetite sample has partly oxidized to γ-hematite, the oxidation curve obtained by TGA will overestimate the Fe2+content of the sample, if background correction is necessary.  相似文献   

4.
The main trends of water dissolution in Fe-bearing olivine have been investigated in the olivine–H2O–hydrocarbon fluid system in experiments at a pressure of 6.3 GPa, a temperature of 1200°C, and hydrogen fugacity ( fH2) buffered by the Mo–MoO2 equilibrium. The content and contribution of ОH defects of different types in Fe-bearing olivines depend on the composition of reduced fluids in the system. As the fraction of hydrocarbons in the fluid increases, the H2O content in olivine crystals decreases from 900 to 160–180 ppm, while the ОН absorption peaks become lower at high frequencies and occupy a larger part of the infrared spectrum in the low-frequency region. According to the experimental results, even the deepest seated mantle olivines with OH defects were not equilibrated with a fluid rich in light alkanes or oxygenated hydrocarbons.  相似文献   

5.
We have studied the evolution of the texture in two granites and two limestones subjected to slow and uniform temperature change. Each granite has a different grain size and each limestone a different texture: Carrare crystalline limestone and Crepey oolitic limestone. Temperature was varied from 200°C to 700°C. Scanning Electron Microscope observations of different rock samples show that during thermal cycling intercrystalline boundaries in granites widen out progressively and porosity increases. New microcracks appear in crystals between 500°C and 600°C. In Carrare crystalline limestone, intercrystalline cracks appear at temperatures as low as 200°C. Due to its heterogeneous cracks appear at temperatures as low as 200°C. Due to its heterogeneous increasing temperature. Longitudinal wave velocity and intrinsic permeability show good correlation with the Scanning Electron Microscope observations.  相似文献   

6.
Experiments were carried out on the thermal decomposition of sporopollenin, isolated from a marine algae (Lycopodium clavatum) at constant temperature (380°C) and pressure (around 200 atm), but for varying pyrolysis times.The decomposition products were separated into groups, analysed by chromatography and infra-red spectroscopy, and their elemental composition determined. The thermal evolution of sporopollenin proceeds in three distinct steps: first, a partial decomposition of the initial substance occurs with the formation of soluble materials. This is followed by a full decomposition of the sporopollenin and disappearance of the non-soluble residue. Finally, a non-soluble material reappears. It is proposed that, due to secondary reactions, the evolution of kerogen of the sapropelic type is similar to what has been observed in mild pyrolysis experiments.  相似文献   

7.
During the drying of wood, volatile organic compounds are emitted. These emissions contribute, in the presence of nitrogen oxides and sunlight, to the formation of ground level ozone and other harmful photo-oxidants. Emissions of volatile organic compounds from the drying of birch sawdust in a spouted bed were analyzed with a flame ionization detector and with a gas chromatograph-mass spectrometer. A D-optimal model of the emissions showed that the emissions increased exponentially with decreasing sawdust moisture content and that the final sawdust moisture content was influencing emissions about twice as much as the inlet drying medium temperature and the month of logging. At inlet temperatures of 140–170 °C, the emissions increased steeply when the moisture content of the sawdust reached 10%, whereas an inlet temperature of 200 °C caused a surge of thermal degradation products at 15% moisture content. The results of this study should help to reduce the emissions of volatile hydrocarbons during the drying of hardwood sawdust and wood chips.  相似文献   

8.
Environmental protection has mentioned the need to cut out all of fuels sulfur compounds. One of the most important processes that affect sulfur removal in atmospheric condition is the interaction of liquid fuels with solid sulfur removal adsorbents such as zeolites. To investigate the nano-AgX-zeolite efficiency for the sulfur adsorption process, a set of experimental tests was arranged and conducted by Box–Behnken design software, in an adsorption laboratory setup. The selected variables comprised metal percent, adsorption temperature and calcination temperature. The parameter levels were 0.5–10 %, 30–120 and 200–500 °C, respectively. The experiment results were used to find the statistical model. The results demonstrate that the sulfur concentration level is 48.36 ppm in the last product at 83 °C for adsorption temperature, 5.53 % for metal percent and 436 °C for calcination temperature in constant pH and constant process time.  相似文献   

9.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

10.
Variations in the mechanical properties (compressive strength, elastic modulus, tensile strength, and fracture toughness) of granite were analyzed as functions of temperature. It was found that above 200 °C, tensile strength and fracture toughness tended to decrease with temperature, while variations in the compressive strength and elastic modulus demonstrated decreasing trends when the heating temperature exceeded 400 °C. The temperature ranges of room temperature—200 and above 600 °C—corresponded to an undamaged state and strongly/completely damaged state, respectively. It is suggested that 400 °C might be a critical threshold of thermal damage to granite. Based on results of statistical tests, a sharp decrease in mechanical properties can be recognized, accompanied by a drastic growth in peaking strain and acoustic emission rate. This phenomenon may be associated with the α/β phase transition of quartz.  相似文献   

11.
The in situ Raman spectra of a hydrous anorthoclase at temperatures of 20–800 °C have been measured using a LABRAM-HR spectrometer and Linkam TS 1500 heating stage. The frequencies of modes at 54, 99, 130 and 162 cm?1 related to M–O vibrations decrease sharply and then increase drastically or keep steady at temperatures above 200 °C. A knee point can be clearly seen at about 200 °C for those modes. The frequency of the mode at 282 cm?1 shows little temperature dependence. However, for the two strongest modes at 471 and 512 cm?1, the frequencies decrease linearly with increasing temperature. From evolution of the frequencies of modes at 54, 99, 130 and 162 cm?1 with temperature, the following conclusions can be drawn: (1) The distance of the local M–O bond shortens rather than lengthens at temperatures above 200 °C; (2) The abrupt changes of the local structure of M site induce a collapse of the framework structure and displacive phase transition at 200 °C; and (3) The H atoms incorporated in anorthoclase are located at the M site. These results are indicative for the structure and properties of anorthoclase at deep earth conditions.  相似文献   

12.
Characterization of the Panandhro lignite deposits from western Indian state of Gujarat, based on the geochemical and palynological evidences, has been performed to assess the floral composition, maturity and hydrocarbon potential of the sequence. Elementally, the lignites consist of moderate carbon, low hydrogen and moderate sulfur contents. The samples are characterized by high TOC contents (lignite: av. 46.43 wt.%, resin: 62.47 wt.%). The average HI values for the lignite is 136 mg HC/g TOC, and that of the associated resin is 671 mg HC/g TOC. The highest Tmax is recoded in lignite (422°C) and lowest in the resin (39°C) samples. The FTIR spectrum of lignite is characterized by highly intense OH stretching peak ~3350 cm-1, aliphatic CHx stretching peaks between 3000-2800 cm-1, aromatic C=O stretching and an aromatic C=C stretching. The spectrum of resin shows strongest absorption due to aliphatic CHx stretching between 2940-2915 cm-1 and 2870-2850 cm-1, and deformation by the medium peak between 1450 and 1650 cm-1. The recovered palynofloral assemblage indicates the dominance of angiosperm pollen grains with maximum abundance of Arecaceae family, and subdominant pteridophytic spores. Marine influence is indicated by the presence of abundant dinoflagellate cysts. The occurrence of flora from a variety of ecological niches suggests a luxuriant diverse vegetation pattern existed in the vicinity of depositional site under humid tropical conditions. The overall characteristics of the lignite deposits point towards their ability to generate (upon maturation) hydrocarbons as they have types III–II admixed kerogen (organic matters).  相似文献   

13.
The formation of solid bituminous matter (SBM) on surfaces of microporous silicates was experimentally studied at pressure and temperature conditions typical of late-stage magmatic and hydrothermal processes. Aliquots of microporous silicate minerals (zorite and kuzmenkoite-Mn, Lovozero Alkaline Massif, Kola Peninsula, Russia) were exposed to solid or liquid organic carbon sources (natural brown coal and liquid 1-hexene for synthesis purposes) in a 0.1 M NaCl-solution for 7 days, at constant pressure (50 MPa), and at three individual temperatures (200, 275, and 300 °C). No thermal decomposition of the solid organic sources happened at 200 °C and only a thin film of brown coal derivatives on the silicates’ surfaces and no formation of SBM were observed at 275 °C and 300 °C. But solid bituminous matter on the surfaces of both microporous silicates were detected in experiments with liquid 1-hexene as organic carbon source and at temperatures of 275 °C and 300 °C with a more pronounced formation of SBM at 300 °C compared to 275 °C. The aromatic and aliphatic hydrocarbons, as well as alcoholic compounds of the experimentally produced SBM are similar, if not even partly identical, with natural SBM occurrences of the Khibiny and Lovozero Massifs, Kola Peninsula, Russia, and from the Viitaniemi granitic pegmatite, Finland, as shown by FT-IR and 1H NMR spectroscopy. This strengthens the hypothesis of formation of natural solid bituminous matter by catalytic reactions between microporous Ti-, Nb- and Zr-silicates and hydrocarbons at postmagmatic hydrothermal conditions.  相似文献   

14.
We performed in situ infrared spectroscopic measurements of OH bands in a forsterite single crystal between ?194 and 200 °C. The crystal was synthesized at 2 GPa from a cooling experiment performed between 1,400 and 1,275 °C at a rate of 1 °C per hour under high silica-activity conditions. Twenty-four individual bands were identified at low temperature. Three different groups can be distinguished: (1) Most of the OH bands between 3,300 and 3,650 cm?1 display a small frequency lowering (<4 cm?1) and a moderate broadening (<10 cm?1) as temperature is increased from ?194 to 200 °C. The behaviour of these bands is compatible with weakly H-bonded OH groups associated with hydrogen substitution into silicon tetrahedra; (2) In the same frequency range, two bands at 3,617 and 3,566 cm?1 display a significantly anharmonic behaviour with stronger frequency lowering (42 and 27 cm?1 respectively) and broadening (~30 cm?1) with increasing temperature. It is tentatively proposed that the defects responsible for these OH bands correspond to H atoms in interstitial position; (3) In the frequency region between 3,300 and 3,000 cm?1, three broad bands are identified at 3,151, 3,178 and 3,217 cm?1, at ?194 °C. They exhibit significant frequency increase (~20 cm?1) and broadening (~70 cm?1) with increasing temperature, indicating moderate H bonding. These bands are compatible with (2H)Mg defects. A survey of published spectra of forsterite samples synthesized above 5 GPa shows that about 75 % of the incorporated hydrogen belongs to type (1) OH bands associated with Si substitution and 25 % to the broad band at 3,566 cm?1 (type (2); 3,550 cm?1 at room temperature). The contribution of OH bands of type (3), associated to (2H)Mg defects, is negligible. Therefore, solubility of hydrogen in forsterite (and natural olivine compositions) cannot be described by a single solubility law, but by the combination of at least two laws, with different activation volumes and water fugacity exponents.  相似文献   

15.
Carbonate minerals and water (or geofluids) reactions are important for modeling of geochemical processes and have received considerable attention over the past decades. The calcite dissolution rates from 50℃ to 250℃ at 10 MPa in deionized water with a flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. The dissolution began near the equilibrium with c/ceq 〉 0.3 and finally reached the equilibrium at 100℃-250℃, so the corresponding solubility was also determined as 1.87, 2.02, 2.02 and 1.88×10^-4.mol/L at 100℃, 150℃, 200℃ and 250℃ respectively, which was first increasing and then switching to decreasing with temperature and the maximum value might occur between 150℃ and 200℃. The experimental dissolution rate not only increased with temperature, but also had a rapid increase between 150℃ and 200℃ at a constant flow rate of 4 mL/min. The measured dissolution rates can be described using rate equations of R = k(1-c/ceq)n or R = kc-n. In these equations the reaction order n changed with temperature, which indicates that n was a variable rather than a constant, and the activation energy was 13.4 kJ/mol calculated with R = k(1-c/ceq)n or 18.0 kJ/mol with R = kc^-n, which is a little lower than the surface controlled values. The varied reaction order and lower activation energy indicates that calcite dissolution in this study is a complex interplay of diffusion controlled and surface controlled processes.  相似文献   

16.
Open burning of waste at dumpsites sites may alter many physical and chemical properties of underlining soil layers including its ability to retard the migration of potential contaminants, such as lead, through the vadose zone. In this study, lead sorption onto soil samples from Irbid that were subjected to high temperatures has been investigated. These samples were collected from ground surface and heated to temperatures of 25, 70, 100, 200, 225, 250, 275, 300, 400, and 550°C. Based on these temperatures the soil was divided into ten different groups. Each group was first characterized by conducting a set of experiments to estimate the Atterberg limits (liquid limit, plastic limit, and plasticity index), the organic carbon content, and a set of batch experiments to study lead adsorption. Results indicate that the LL, PL, total organic carbon are slightly affected by high temperatures less than 200°C, show an abrupt change between temperature from 200 and 300°C, and then slight change above 300°C. Sorption of lead onto heated samples, however, was not significantly changed. This may be explained by the fact that adsorption of heavy metals mainly occurs onto the soil mineral parts which are slightly affected by the temperature range used in this study.  相似文献   

17.
Low temperature cracking experiments of a representative protein, at temperatures not far above the observed temperature range of 130–160°C of mature California oil source rocks, indicate the formation of all gaseous and of some gasoline range hydrocarbons of petroleum. Based on protein derivatives only it is estimated that a maximum of at least 3–8% by weight of the total organic matter of oil source sediments may be converted into such hydrocarbons. This is in addition to hydrocarbons originating from lipids.  相似文献   

18.
The rate of silica removal from two montmorillonites (Chambers and Polkville) has been measured as a function of time, temperature, solution composition, and exchange ion on the clay. Silica removal rate increased with temperature from 200 to 350°C, decreased with time, and could be approximated initially by a parabolic rate law. Solution composition influenced silica removal rate by determining the exchange population of the clay; silica removal is most rapid when K-exchange ions are present. Thus increasing the concentration of K+ accelerated silica removal, whereas increasing the concentration of Na+, Ca2+, and Mg2+ inhibited silica removal. Activation energies for silica removal range from 5 to 10 kcal/mol. The largest values are associated with the largest concentrations of inhibitor ions in solution. Activation energies of this magnitude suggest that the rate-limiting step for silica removal is transport through a hydrated, expanded interlayer space. Application of experimental results to diagenesis in moderately to deeply buried sediments suggests that K+ uptake by montmorillonite may precede and accelerate illite formation.  相似文献   

19.
Pressure–temperature conditions of tourmaline breakdown in a metapelite were determined by high-pressure experiments at 700–900°C and 4–6 GPa. These experiments produced an eclogite–facies assemblage of garnet, clinopyroxene, phengite, coesite, kyanite and rare rutile. The modal proportions of tourmaline clearly decreased between 4.5 and 5 GPa at 700°C, between 4 and 4.5 GPa at 800°C, and between 800 and 850°C at 4 GPa, with tourmaline that survived the higher temperature conditions appearing corroded and thus metastable. Decreases in the modal abundance of tourmaline are accompanied by decreasing modal abundance of coesite, and increasing that of clinopyroxene, garnet and kyanite; the boron content of phengite increases significantly. These changes suggest that, with increasing pressure and temperature, tourmaline reacts with coesite to produce clinopyroxene, garnet, kyanite, and boron-bearing phengite and fluid. Our results suggest that: (1) tourmaline breakdown occurs at lower pressures and temperatures in SiO2-saturated systems than in SiO2-undersaturated systems. (2) In even cold subduction zones, subducting sediments should release boron-rich fluids by tourmaline breakdown before reaching depths of 150 km, and (3) even after tourmaline breakdown, a significant amount of boron partitioned into phengite could be stored in deeply subducted sediments.  相似文献   

20.
Future climatic conditions may coincide with an increased potential for wildfires in grassland and forest ecosystems, whereby charred biomass would be incorporated into soils. Molecular changes in biomass upon charring have been frequently analysed with a focus on black carbon. Aliphatic and aromatic hydrocarbons, known to be liberated during incomplete combustion of biomass have been preferentially analysed in soot particles, whereas determinations of these compounds in charred biomass residues are scarce. We discuss the influence of increasing charring temperature on the aliphatic and aromatic hydrocarbon composition of crop grass combustion residues. Straw from rye, representing C3 grasses and maize, representing C4 grasses, was charred in the presence of limited oxygen at 300, 400 and 500 °C. Typical n-alkane distribution patterns with a strong predominance of long chain odd-numbered n-alkanes maximising at C31 were observed in raw straw. Upon combustion at 300 °C aliphatic hydrocarbons in char were dominated by sterenes, whereas at 400 °C sterenes disappeared and medium chain length n-alkanes, maximising around n-C20, with a balanced odd/even distribution were present. At a charring temperature of 500 °C n-alkane chain length shifted to short chain homologues, maximising at C18 with a pronounced predominance of even homologues. Even numbered, short chain n-alkanes in soils may thus serve as a marker for residues of charred biomass. Aromatic hydrocarbons indicate an onset of aromatization of biomass already at 300 °C, followed by severe aromatization upon incomplete combustion at 400–500 °C. The diagnostic composition of aliphatic and aromatic hydrocarbons from charred biomass affords potential for identifying residues from burned vegetation in recent and fossil soils and sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号