首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The first quantitative measurements of azaarenes in marine sediments are reported for Puget Sound, in northwestern Washington State, U.S.A. Two- to four-ring azaarenes, in concentrations as low as 50 ppb (relative to organic carbon), are measured in 210Pb dated sediments using glass capillary gas chromatography combined with nitrogen-selective detection.Azaarene distributions are geographically and temporally variable. Azaarene distributions in upper sediment layers suggest that total azaarene concentrations are related to proximity to urban areas, and may be anthropogenically derived. Subsurface maxima between 6 and 17 cm in several cores resemble similar maxima in PAH and organo-sulfur compounds. Trace quantities of azaarenes present in sediments, deposited prior to urbanization of the Puget Sound region, suggest low-level natural azaarene sources. One core containing particulate coal produced a concentrated and complex azaarene mixture, suggesting either introduction of mined coal or erosion of regional coal deposits. Analyses of possible azaarene sources indicate that although azaarene compositions vary between sources, coal azaarenes can be distinguished from petroleum azaarenes by their ratios of 2-ring to 3-ring azaarenes, and may identify predominant azaarene inputs in environmental samples. Gross differences in azaarene composition exist between European and American air particulates and sediments, suggesting differences in azaarene sources.  相似文献   

2.
Activity profiles of excess 234Th, excess 210Pb, 232Th, 230Th, 234U and 238U, and 228/232Th ratios determined in eight box cores of sediment from six sites in central Puget Sound provide new insights into the dynamic nature of solid phase mixing in surface sediments, the exchange of 228Ra and other soluble species across the sediment-water interface, and the cycling of U, Th and 210Pb in this coastal zone.Comparison of excess 234Th inventories in sediments with its production rate in the overlying water column indicates a mean residence time of at most 14 days for particles in the central Puget Sound water column.Surface sediment horizons with excess 234Th have no excess 228Th which might be used to ascertain sediment accumulation rates over the past decade. Instead, deficiencies of 228Th due to loss of soluble 228Ra from pore water to the overlying water persist to 20–30 cm, revealing that exchange of soluble chemicals between pore and overlying waters reaches these depths in the extensively bioturbated sediments of Puget Sound.Solid phase U isotope concentrations tend to increase by up to a factor of two with depth in sediments, as a result of dissolved U being biologically pumped down into sediments where it is partially removed when conditions become mildly reducing. 232Th and 230Th activities and 230/232Th ratios are constant with depth in sediments, indicating constant detrital phase compositions and essentially no authigenic 230Th. Steady state 210Pb depositional activities in and fluxes to Puget Sound sediments average only about onehalf those for sediments of the open Washington coast north of the Columbia River mouth, primarily because of a much lower supply of dissolved 210Pb in sea waters adverting into Puget Sound.Excess 234Th profiles in sediments reveal much more detail about the depth dependency, dynamic nature and recent history of solid phase mixing processes than excess 210Pb profiles. At least six of eight 234Th profiles show that mixing within the 210Pb-defined surface mixed layer is depth dependent. In three profiles, 234Th-derived mixing rates are fastest several centimeters below the sediment-water interface, indicating greater macro-benthic activity at these depths. Depth dependent mixing coefficients derived from the best fit of a four layer, advection-diffusion-decay model to the 234Th data are consistent with 210Pb profiles determined for the same sediments, strongly suggesting that 234Th and 210Pb are mixed equivalently and in a multilayered manner.  相似文献   

3.
We present the results of compound-specific sulfur isotope analyses performed on organic sulfur compounds (OSCs) isolated from sediments deposited in the euxinic Cariaco Basin, Venezuela. Individual OSCs (sulfurized highly branched isoprenoids and malabaricatriene) have sulfur isotope compositions of ca. −15‰, which is 34S enriched by 5-15‰ relative to coeval bulk organic and inorganic sulfur pools. These observed differences in the sulfur isotope composition of bulk organic sulfur in the kerogen and bitumen pools and individual OSCs demonstrate that there are multiple pathways of organic sulfur formation operating simultaneously in marine sediments. Comparison of our measured compound-specific sulfur isotope data with values predicted using simple isotopic mass balance assumptions suggests that the sulfurization process likely involves multiple sources of inorganic sulfur. Further, the isotopic composition of these various precursor inorganic sulfur species and the specific pathway of sulfur incorporation into organic matter (OM) impart distinct isotopic compositions to the resulting organic sulfur compounds. These data represent the first compound-specific sulfur isotope measurements made in marine sediments, and demonstrate the utility of compound-specific sulfur isotope analysis in identification of inorganic sulfur sources for OM sulfurization and tracking pathways of sulfur incorporation, which will lead to a more complete understanding of diagenetic sulfurization of OM.  相似文献   

4.
The distribution of dissolved iron, ferrous iron and acid-reducing agent soluble iron has been investigated in the main basin of Puget Sound and its tributaries. Essentially all measurable iron in Puget Sound can be removed by filtration through 0.8 μm membrane filters, thus dissolved iron must be less than about 20 nM (our limit of detection). We could also detect no ferrous iron in Puget Sound. This is due to the rapid kinetics of oxidation of Fe(II). Our measured rate constant for the kinetics of oxidation suggests that strong ferrous-organic matter complexes do not exist in Puget Sound pore waters.The distribution of acid-soluble iron is low at mid-depth and increases toward the air-water and sediment-water interface and appears to be controlled by inputs from the rivers and the sediments. Only a small fraction of the river load appears to make it through the estuaries because the magnitude of the surface concentrations is smaller than predicted based on the calculated river flux. The “dissolved” iron in the rivers appears to be actually fine colloidal particles that coagulate before the salinity exceeds 5%. The increase towards the sediments is probably due to resuspension of botton sediments perhaps augmented by iron diffusing out of the sediments to form new iron oxide particles.  相似文献   

5.
Aliphatic hydrocarbon compositions were quantitatively characterized in plankton, sediment trap-collected particulate materials and sediments from Dabob Bay using high resolution glass capillary gas chromatography. The average net accumulation of individual hydrocarbons measured in a 1-yr series of sediment traps was compared with the net accumulation of corresponding compounds measured in three depth intervals of 210Pb-dated bottom sediments. Systematic and rapid decreases in the net accumulation of individual hydrocarbons were observed from the sediment traps to the sediments. Most pronounced decreases were measured for planktonically derived hydrocarbon constituents (e.g. pristane and two unsaturated compounds) which are rapidly remineralized at or near the sediment-water interface. Consequently, the amount of each compound measured in deposited sediments is not necessarily a quantitative indication of its initial flux to the sediments. The n-alkanes (C25,27,29,31). characteristic of terrestrial plant waxes, are the predominant hydrocarbons measured by 4–6 cm depth in these sediments and show reasonably constant net accumulation below this interval.Significant diagenetic alteration of the bulk organic matter contained in the average sediment trap particulate material is also noted through comparison with bottom sediments on the basis of organic C/N and δ13C measurements. Organic matter elementally similar to marine plankton is preferentially remineralized upon deposition of the sedimentary particulates. The residual organic matter remaining and buried in the bottom sediments closely resembles terrestrial organic matter.  相似文献   

6.
Concentration of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenyltrichloroethane), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBs (total polychlorinated biphenyls) and total chlordanes (oxy-, α-, and γ-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstream of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Total hydrocarbons (THC), normalized to the fine-grain fraction (clay + silt, < 63 μm), ranged from 120 μg g?1 to, 1,900 μg g?1 fine-grain sediment. The hydrocarbons were dominated by the unresolved complex mixture (UCM), with total polycyclic aromatic hydrocarbons (PAHs) concentrations ranging from 4 μg g?1 to 33 μg g?1 fine-grain sediment. Alkyl-substituted compounds (e.g., C1 to C4 methyl groups) of naphthalene, fluorene, phenanthrere + anthracene, and chrysene series dominated the polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products (i.e., pyrogenic sources) and direct discharges of petroleum products. Total PCB concentrations ranged from 0.075 μg g?1 to 2.6 μg g?1 fine-grain sediment, with highest concentrations in the Anacostia River. Four to six C1-substituted biphenyls were the most-prevalent PCBs. Variability in the PCB distribution was observed in different sampling areas, reflecting, differing proportion of Arochlor inputs and degradation. The concentration of all contaminants was generally higher in sediments closer to known sewer outfalls, with concentrations of total hydrocarbon, PAHs, and PCBs as high as 6,900 μg g?1, 620 μg g?1, and 20 μg g?1 fine-grain sediment, respectively. Highest PCB concentrations were found in two outfalls that drain into the Tidal Basin. Concentrations of organic contaminants from sewers draining to the Washington Ship Channel and Anacostia River had higher concentrations than sediments of the mid-channel or river. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. Whereas most point-source contaninant inputs have been regulated, the importance of nonpoint source inputs must be assessed for their potential addition of contaminants to aquatic ecosystems. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed.  相似文献   

7.
The study was carried out on the Sulejów dam reservoir (Central Poland). Water and sediment samples were collected between February and October 2006. Sulfur compounds in the sediment were chemically extracted and subjected to isotopic analysis.Large variability of SO42− concentration in the water column (from 10.3 to 36.2 mg/dm3) and the isotopic composition of sulfur (δ34S from 2.1 to 5.4‰) was observed. The main identified sources of SO42− were watercourses, surface runoff, and phosphorus fertilizers.Both oxidized sulfur species (SO42−) and its reduced forms were found in sediments. Particular sulfur forms were characterized by large variations in both, concentrations and the isotopic composition of sulfur. SO42− in the sediment and in the water column had different genesis. Bacterial oxidation of organic sulfur and its binding in SO42− were observed in the sediment. Under reducing conditions, oxidized and organic sulfur is converted to H2S which reacted with Fe or other metallic ions leading to metal sulfide precipitation. Monosulfides were shown to have a very low concentration, ranging up to 0.07 mg/g of sediment. The transformation of elemental sulfur from sulfides through their chemical oxidation occurred in the sediment.  相似文献   

8.
Production and resource use by intertidal taxa were studied in the estuarine fjord of Puget Sound, Washington, USA. Along nearly 100 km, salinity is similar, and intertidal habitat and immersion time were kept consistent, thus allowing a focus on other environmental variables such as temperature and resource availability that could influence growth. Primary producers (ulvoid and fucoid macroalgae) and suspension feeders (oysters and barnacles) were transplanted on three beaches in each of three regions and assessed for individual-level growth, carbon and nitrogen ratios, and stable isotopes. In most transplants, δ13C and C/N showed no regional variation but δ15N was enriched up-estuary. Among environmental variables, chlorophyll a, total suspended solids, and particulate organic matter had small and/or inconsistent regional variation, but temperature was higher up-estuary. For the most intensively studied species (Pacific oyster, Crassostrea gigas) transplanted four times over 2 years, seasonal and regional variation in growth were best predicted by temperature rather than resource availability. Growth rates continued to increase into Totten Inlet, a shallow finger inlet at the head of Puget Sound. As indicators of environmental conditions, the growth and tissue chemistry of intertidal study taxa affirm that sources and amounts of resources show no strong gradients along this estuarine fjord, and they also support temperature as a key factor for performance, with species-specific responses. Higher temperatures may also have community-level impacts, given prior evidence linking beach temperatures to reduced intertidal diversity and biomass into Puget Sound.  相似文献   

9.
Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C)wa 0.52) and contained less hydrogen ((H/C)wa 1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.  相似文献   

10.
Eighteen sediment samples and six water-column samples were collected in a small (6 km2), coastal embayment (Port Jefferson Harbor, New York) to define a high-resolution spatial distribution of metals and to elucidate sources of contaminants to the harbor. Sediment metal (Ag, Cu, Fe, Ni, Pb, V, and Zn) concentrations varied widely, reflecting differences in sediment grain size, with higher metal concentrations located in the fine-grained inner harbor sediments. Calculated enrichment factors for these sediments show that Ag, Pb, Cu, and Zn are elevated relative to both crustal abundances and their respective abundances in sediments in central Long Island Sound. Metal concentrations were 1.2 to 10 fold greater in water from the inner harbor compared to water from Long Island Sound collected outside the mouth of the harbor. Spatial variations in trace metals in surface waters within the bay parallel the spatial variations of trace metals in sediments within the harbor. Elevated water-column metal concentrations appear to be partially derived from a combination of diagenetic remobilization from contaminated sediments (e.g., Ag) and anthropogenic sources (e.g., Cu and Zn) within the southern portions of the harbor. Although the National Status and Trends Program had reported previously that sediment metal concentrations in Port Jefferson Harbor were low, the results of this study show sediment metals have high spatial variability and are enriched in the inner harbor sediments at levels comparable to more urbanized western north shore Long Island harbors.  相似文献   

11.
To determine the degree of hydrocarbon contamination and the contribution of local petroleum industries to contaminant loadings in sediments from the Beiluohe River, China, 12 surface sediment samples were collected for geochemical analysis in 2005. Sediment samples were extracted by organic solvents, separated by silica gel column chromatography and the profiles of n-alkanes, biomarkers and polycyclic aromatic hydrocarbons (PAHs) in sediments were analyzed by gas chromatography with flame ionization detector and gas chromatography/mass spectroscopy. Concentrations of total hydrocarbons in the sediments varied from 12.1 to 3,761.5 μg g−1 dry wt, indicating that most sediments in Beiluohe River was only slightly to moderately contaminated by hydrocarbons. Concentrations of PAHs for six samples (sum of 16 isomers) varied from 17.7 to 407.7 ng g−1 dry wt and at present low levels of PAHs did not cause adverse biological effects in Beiluohe River sedimentary environment. PAH compositions, n-alkanes and biomarker profiles all suggested that there were different sources of contaminations in studied areas. n-Alkanes reflect two distinct sources: a fossil n-alkane series from crude oil at sites S40, S43, S87 and plantwax n-alkanes at sites S39 and S45. Judged by their PAH ratios, the sediments at site S15 were pyrolytic, sediments at S17 and S43 were petrogenic, and sediments at S39, S40 and S64 had a mixture source of pyrolytic and petrogenic.  相似文献   

12.
The present study aims to establish the factors controlling the stable carbon isotopic compositions (δ13C) of individual aromatic hydrocarbons analysed by compound specific isotope analysis (CSIA) in crude oils from western Australian petroleum basins of varying age and facies type. This paper reports δ13C values of individual aromatic hydrocarbons, like alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes and methylated biphenyls. The main aims are to confirm the origin (source) and age of these oils based on CSIA of selected aromatic compounds and to understand why the Sofer plot is ineffective in establishing the source of western Australian petroleum systems. The bulk δ13C of saturated and aromatic hydrocarbon fractions of crude oils have been previously used to differentiate sources, however, many Australian crude oils are not classified correctly using this method. The oils were classified as marine by the δ13C values of individual aromatic compounds and as terrigenous based on the bulk δ13C data (Sofer plot).The oils where the δ13C values of 1,6-DMN and 1,2,5-TMN isomers are most negative are indicative of a marine source, whereas oils with a less negative values for the 1,6-DMN and 1,2,5-TMN isomers are derived from marine source rocks that contain a significant terrigenous component. Similarly, oils with the least negative δ13C values for the 1-MP and 1,9-DMP isomers reflect varying inputs of terrigenous organic matter to the their marine source rocks. Plots of P/DBT and Pr/Ph concentration ratios versus δ13C values of DMP, 1,6-DMN, 1,2,5-TMN, 1-MP and 1,9-MP are constructed to establish the relative amount of terrigenous organic matter contributing to the source rock of a series of marine oils. The ratios of P/DBT and Pr/Ph plotted against the δ13C values of the aromatic isomers (such as 1,6-DMN, 1,2,5-TMN, 1-MP and 1,9-MP) provide a novel and convenient way to discriminate crude oils derived from different source rocks that contain varying amounts of marine and terrigenous organic matter.  相似文献   

13.
Groundwater and sediment samples (∼ 1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in sedimentary layers. Pyrite was the dominant sulfur-bearing phase in the capillary fringe and groundwater zones where anoxic conditions are found. Low concentrations of pyrite (< 5.9 g kg− 1) coupled with high concentrations of dissolved sulfide (4.81 to 134.7 mg L− 1) and low concentrations of dissolved Fe (generally < 1 mg L− 1) and reducible solid-phase Fe indicate that availability of reactive Fe limits pyrite formation. The relative uniformity of down-core isotopic trends for sulfur-bearing mineral phases in the sedimentary layers suggests that sulfate reduction does not result in significant sulfate depletion in the sediment. Sulfate availability in the deeper sediments may be enhanced by convective vertical mixing between upper and lower sedimentary layers due to evaporative concentration. The large isotope fractionation between dissolved sulfate and sedimentary sulfides at Owens Lake provides evidence for initial fractionation from bacterial sulfate reduction and additional fractionation generated by sulfide oxidation followed by disproportionation of intermediate oxidation state sulfur compounds. The high salinity in the Owens Lake brines may be a factor controlling sulfate reduction and disproportionation in hypersaline conditions and results in relatively constant values for isotope fractionation between dissolved sulfate and total reduced sulfur.  相似文献   

14.
Thirty-one rock samples from a Western Canada Basin well have been analysed for aromatics, using glass capillary gas chromatography with simultaneous flame ionization and sulfur-selective flame photometric detection. A uniform aromatic distribution pattern with a marked predominance of di- and tricyclic aromatic hydrocarbons was observed throughout a depth interval of 3000 meters comprising Cretaceous and Jurassic sediments. The very high relative abundance of sulfur aromatics at two narrow intervals in the Triassic and Mississippian is attributed to a major change in facies. Gradual changes with increasing depth have been observed for a series of compound ratios, which had been calculated from the isomers of methyl- and dimethylphenanthrene, and their parent compounds. These changes reflect the increasing thermal maturation of the sedimentary organic matter. A Methylphenanthrene Index (MPI) has been introduced, which exhibited a very good correlation with vitrinite reflectance data. The MPI is the first maturity parameter which is based on a series of aromatic hydrocarbons. This hydrocarbon internal maturity parameter permits the recognition and definition of maturity levels in extracts which can be compared to the maturity (e.g. vitrinite reflectance) of source rocks.  相似文献   

15.
Polycyclic aromatic hydrocarbon (PAH) compositions were determined in plankton, sediment-trap-collected particulate material and sediment cores from Dabob Bay using a high performance liquid Chromatographie (HPLC)/fluorescence technique. The annual flux of individual PAH measured in a series of sediment traps was compared with the flux of corresponding compounds determined from 210Pb dated bottom sediments. Systematic seasonal variations in the fluxes and concentrations of PAH, Al and organic carbon in the trap-collected particulates and seasonally collected plankton were also investigated to determine whether or not PAH are associated with either terrestrial or marine-derived materials.Concentrations of all PAH studied increased tenfold within the last 80–100 yr of sediment deposition, except for perylene which displayed a reasonably constant concentration profile. This suggests at least two sources contribute to the observed sedimentary PAH compositions in Dabob Bay, i.e., anthropogenic combustion and a natural source. Plankton and sediment trap-collected particulates contained PAH mixtures qualitatively similar to underlying surface sediments. Microscopic examination indicated fecal pellets were the major form of particulate material in the sediment traps. The fecal pellets collected in the sediment trap time series quantitatively account for essentially 100% of the PAH fluxes measured in the 210Pb dated sediments, implying Zooplankton fecal pellets control the removal of PAH to Dabob Bay sediments. These measurements provide clear evidence that the PAH studied are not produced after sediment deposition. The observed seasonal covariations of PAH and Al in both sediment trap and plankton samples further indicate that PAH originate from terrestrially-based sources, are introduced into the marine environment by runoff and erosion or atmospheric deposition and are not produced by marine plankton.  相似文献   

16.
Hypoxia has been observed in Hood Canal, Puget Sound, WA, USA since the 1970s. Four long sediment cores were collected in 2005 and age-dated to resolve natural and post-urbanization signatures of hypoxia and organic matter (OM) sources in two contrasting basins of Puget Sound: Main Basin and Hood Canal. Paleoecological indicators used for sediment reconstructions included pollen, stable carbon and nitrogen isotopes (??13C and ??15N), biomarkers of terrestrial OM (TOM), biogenic silica (BSi), and redox-sensitive metals (RSM). The sedimentary reconstructions illustrated a gradient in RSM enrichment factors as Hood Canal > Main Basin, southern > northern cores, and pre-1900s > 1900?C2005. The urbanization of Puget Sound watersheds during the 1900s was reflected as shifts in all the paleoecological signatures. Pollen distributions shifted from predominantly old growth conifer to successional alder, dominant OM signatures recorded a decrease in the proportion of marine OM (MOM) concomitant with an increase in the proportion of TOM, and the weight % of BSi decreased. However, these shifts were not coincidental with an overall increase in the enrichment of RSM or ??15N signatures indicative of cultural eutrophication. The increased percentage of TOM was independently verified by both the elemental ratios and lignin yields. In addition, isotopic signatures, BSi, and RSMs all suggest that OM shifts may be due to a reduction in primary productivity rather than an increase in OM regeneration in the water column or at the sediment/water interface. Therefore, the reconstructions suggested the Hood Canal has been under a more oxygenated ??stance?? during the twentieth century compared to prior periods. However, these 2005 cores and their resolutions do not encompass the period of high resolution water column measurements that showed short-lived hypoxia events and fish kills in Hood Canal during the early twenty-first century. The decoupling between the increased watershed-scale anthropogenic alterations recorded in the OM signatures and the relatively depleted RSM during the twentieth century suggests that physical processes, such as deep-water ventilation, may be responsible for the historical variation in oxygen levels. Specifically, climate oscillations may influence the ventilation and/or productivity of deep water in Puget Sound and particularly their least mixed regions.  相似文献   

17.
Muddy carbonate deposits near the Dry Tortugas, Florida, are characterized by high organic carbon remineralization rates. However, approximately half of the total sedimentary organic matter potentially supporting remineralization is occluded in CaCO3 minerals (intracrystalline). While a portion of nonintracrystalline organic matter appears to cycle rapidly, intracrystalline organic matter has an approximately constant concentration with depth, suggesting that as long as its protective mineral matrix is intact, it is not readily remineralized. Organic matter in excess of intracrystalline organic matter that is preserved may have a variety of mineral associations (e.g., intercrystalline, adsorbed or detrital). In surface sediment, aspartic acid contributed ∼22 mole % and ∼50 mole % to nonintracrystalline and intracrystalline pools, respectively. In deeper sediment (1.6-1.7m), the composition of hydrolyzable amino acids in both pools was similar (aspartic acid ∼40 mole %). Like amino acids, intracrystalline and nonintracrystalline fatty acids have different compositions in surface sediments, but are indistinguishable at depth. These data suggest that preserved organic matter in the nonintracrystalline pool is stabilized by its interactions with CaCO3. Neutral lipids are present in very low abundances in the intracrystalline pool and are extensively degraded in both the intracrystalline and nonintracrystalline pools, suggesting that mineral interactions do not protect these compounds from degradation. The presence of chlorophyll-a, but absence of phytol, in the intracrystalline lipid pool demonstrates that chloropigments are present only in the nonintracrystalline pool. Sedimentary chloropigments decrease with depth at similar rates in Dry Tortugas sediments as found in alumino-silicate sediments from the Long Island Sound, suggesting that chloropigment degradation is largely unaffected by mineral interactions. Overall, however, inclusion and protection of organic matter by biominerals is a major pathway for organic matter preservation in this low-organic carbon, biomineral-rich regime.  相似文献   

18.
The sulfur isotopic composition of the Herrin (No. 6) Coal from several localities in the Illinois Basin was measured. The sediments immediately overlying these coal beds range from marine shales and limestones to non-marine shales. Organic sulfur, disseminated pyrite, and massive pyrite were extracted from hand samples taken in vertical sections.The δ 34S values from low-sulfur coals (< 0.8% organic sulfur) underlying nonmarine shale were +3.4 to +7.3%0 for organic sulfur, +1.8 to +16.8%0 for massive pyrite, and +3.9 to +23.8%0 for disseminated pyrite. In contrast, the δ 34S values from high-sulfur coals (> 0.8% organic sulfur) underlying marine sediments were more variable: organic sulfur, ?7.7 to +0.5%0, pyrites, ?17.8 to +28.5%0. In both types of coal, organic sulfur is typically enriched in 34S relative to pyritic sulfur.In general, δ 34S values increased from the top to the base of the bed. Vertical and lateral variations in δ 34S are small for organic sulfur but are large for pyritic sulfur. The sulfur content is relatively constant throughout the bed, with organic sulfur content greater than disseminated pyrite content. The results indicate that most of the organic sulfur in high-sulfur coals is derived from post-depositional reactions with a 34S-depleted source. This source is probably related to bacterial reduction of dissolved sulfate in Carboniferous seawater during a marine transgression after peat deposition. The data suggest that sulfate reduction occurred in an open system initially, and then continued in a closed system as sea water penetrated the bed.Organic sulfur in the low-sulfur coals appears to reflect the original plant sulfur, although diagenetic changes in content and isotopic composition of this fraction cannot be ruled out. The wide variability of the δ 34S in pyrite fractions suggests a complex origin involving varying extents of microbial H2S production from sulfate reservoirs of different isotopic compositions. The precipitation of pyrite may have begun soon after deposition and continued throughout the coalification process.  相似文献   

19.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   

20.
This paper uses results from the National Oceanic and Atmospheric Administration’s National Status and Trends Program (NS&T) to place the environmental quality of Long Island Sound in a broader perspective. It compares levels of contaminants in blue mussels from ten Long Island Sound sites and in sediments from seven Long Island Sound sites with concentrations in the same media at 87 and 221 other sites, respectively, where comparable samples were obtained. In sediments, the levels of both trace metals and organic contaminants tend to be relatively high for Long Island Sound sites. This is especially true for five of the twelve metals (silver, cadmium, copper, lead, and zinc) and for five of six categories of organic contaminants (total chlordane, low molecular weight polycyclic aromatic hydrocarbons (PAHs), high molecular weight PAHs, total polychlorinated biphenyls, and total dichlorodiphenyltrichloroethanes). In mussels, the organic contaminant categories exhibit relatively high levels, but this is not true for most of the metals. In fact, four of the metals—arsenic, mercury, selenium, and zinc—show evidence of relatively low levels in mussels from Long Island Sound compared to other NS&T locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号