首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The geochemical processes operating on metals in anoxic marine waters influence metal mobility and mode of transport to the sediments in a manner different from that observed in oxic regimes. In order to better understand these processes, dissolved and particulate Mn, Fe, Co, Ni, Cu, Zn, and Cd concentrations were determined in the water column of a permanently anoxic basin, Framvaren Fjord, Norway. Class specific behavior determines the degree to which these metals are involved in the processes of redox cycling at the O2H2S interface and metal sulfide precipitation in the sulfidic water. Metal sulfide precipitation influences the magnitude of metal enrichment in the sediments. The transition metals, Mn, Fe, and Co, show active involvement in redox cycling, characterized by dissolved maxima just below the O2H2S interface. Nickel concentrations appear unaffected by processes influencing the profiles of the other metals. The metals, Cu, Zn, and Cd, display a dramatic solubility decrease across the interface, are not involved in redox cycling, and are enriched in the sediments relative to a lithogenic component by factors of 11, 105, and 420, respectively. Ion activity products of the metals and sulfide provide evidence that chemical equilibria with a pure metal sulfide solid phase is not the dominant process controlling dissolved metal concentrations in the sulfide containing waters.  相似文献   

2.
The electrocatalytic activity of galena, pyrite and Co3S4 for oxygen reduction has been studied by potentiostatic methods. Open circuit potentials of the sulphide electrodes have also been measured as a function of pH in nitrogen, air and oxygen atmospheres and also in the presence of H2O2 and ethyl xanthate. The adsorption of xanthate on sulphides was followed by observing bubble attachment to the electrodes.The catalytic activity for oxygen (or H2O2) reduction (the cathodic currents), the electrode potentials and the xanthate adsorption as shown by bubble attachment within certain pH limits, all varied as Co3S4 > pyrite (≈ PbS in H2O2) ? PbS indicating considerable dependence of the redox processes in flotation on the d - electron character of the sulphides.In the absence of oxygen, xanthate is probably bonded to the water structure of the surface through hydrogen-bonding, thus keeping the surface hydrophilic. Such adsorption reduces the electrode potential and inhibits oxygen reduction.  相似文献   

3.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

4.
Calibration of five gas geothermometers is presented, three of which used CO2, H2S and H2 concentrations in fumarole steam, respectively. The remaining two use CO2H2 and H2SH2 ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were calculated in steam formed by adiabatic boiling of this water to atmospheric pressure to obtain the gas geothermometry functions. It is shown that the concentrations of CO2, H2S and H2 in geothermal reservoir waters are fixed through equilibria with mineral buffers. At temperatures above 230°C epidote + prehnite + calcite + quartz are considered to buffer CO2. Two buffers are involved for H2S and H2 and two functions are, therefore, presented for the geothermometers involving these gases. For waters containing less than about 500 ppm chloride and in the range 230–300°C pyrite + pyrrholite + epidote + prehnite seem to be involved, but pyrite + epidote + prehnite + magnetite or chlorite for waters above 300°C and waters in the range 230–300°C, if containing over about 500 ppm.The gas geothermometers are useful for predicting subsurface temperatures in high-temperature geothermal systems. They are applicable to systems in basaltic to acidic rocks and in sediments with similar composition, but should be used with reservation for systems located in rocks which differ much in composition from the basaltic to acidic ones. The geothermometry results may be used to obtain information on steam condensation in upflow zones, or phase separation at elevated pressures.Measured aquifer temperatures in drillholes and gas geothermometry temperatures, based on data from nearby fumaroles, compare well in the five fields in Iceland considered specifically for the present study as well as in several fields in other countries for which data were inspected. The results of the gas geothermometers also compare well with the results of solute geothermometers and mixing models in three undrilled Icelandic fields.  相似文献   

5.
Compositional differences between granulite facies rocks and equivalent amphibolite facies rocks and the observation of CO2-rich fluid inclusions in granulites, have led to the suggestion that CO2 must play a role in modifying the composition of deep continental crust. How CO2 effects this change has remained unclear. Using the thermodynamic properties of aqueous ions in a fluid of evolving CO2H2O ratio, it is possible to model the incongruent dissolution of feldspars under conditions appropriate for granulite facies metamorphism. The results demonstrate that dissolution will be strongly enhanced at high CO2H2O ratios, with ion solubilities being Na+ >K+ ? Ca++. This enhancement is compatible with the reported compositional contrasts between granulite and amphibolite facies rock, but requires large fluid volumes.To test the dissolution model, a detailed field and petrologic study was conducted in a well exposed granulite facies terrane in West Greenland. Strong correlation between fluid composition and bulk rock chemistry can be documented; CO2-rich regions contain rocks which consistently have low aNa2OaCaO ratios, while H2O-rich regions consistently have high aNa2OaCaO ratios. Magnetite rims on sulfide grains are ubiquitous in high ?Co2 regions and are absent in high ?H2O regions, and they provide evidence that CO2 was introduced into the region. These correlations and observations are predictable from the properties of the dissolution process. These considerations, along with observations regarding graphite petrogenesis, provide strong arguments that the total fluid volume interacting with the rock during metamorphism was very large, in some cases equaling or exceeding total rock volume. Such large fluid volumes can lead to significant compositional modification of the crust, and will mask the original protolith chemistry. Such processes should lead to Ca- and Al-enriched, Na-, K-, S- and Si-depleted residues in the deep crust.  相似文献   

6.
Thermodynamic calculations for selected silicate-oxide-fluorite assemblages indicate that several commonly occurring fluorite-bearing assemblages are restricted to relatively narrow ?O2-?F2 fields at constant P?T. The presence of fayalite-ferrohedenbergite-fluorite-quartz ± magnetite and ferrosalite-fluorite-quartz-magnetite assemblages in orthogneisses from Au Sable Forks, Wanakena and Lake Pleasant, New York, buffered fluorine and oxygen fugacities during the granulite facies metamorphism in the Adirondack Highlands. These buffering assemblages restrict?F2 to 10?29 ± 1 bar and ?02 to 10?16 ± 1 bar at the estimated metamorphic temperature of 1000K and pressure of 7 kbar. The assemblage biotite-magnetite-ilmenite-K-feldspar, found in the same Au Sable Forks outcrop as the fayalite-fluorite-ferrohedenbergite-quartz-magnetitie assemblage, restricts H2O fugacities to less than 103·3 bar. These fugacities limit H2 and HF fugacities to less than 101 bar for the Au Sable outcrop. The data indicate that relative to H2O, O2, H2, F2 and HF are not major species in the fluid equilibrated with Adirondack orthogneisses. The calculated F2 fugacilies are similar to the upper limits possible for plagioclase-bearing rocks and probably represent the upper ?F2 limit for metamorphism in the Adirondacks and in other granulite facies terranes.  相似文献   

7.
A new technique for the determination of intrinsic oxygen fugacities (?O2's) of single and polyphase geological samples with solid ZrO2, oxygen-specific electrolytes is described. Essentially the procedure involves isolating the emf signal from the sample from that unavoidably imposed by the residual atmosphere inside the sample-bearing sensor. By varying the ?O2 of the residual atmosphere, it is possible to determine a ‘plateau’ value of constant ?O2 recorded from the sensor which represents a reversed intrinsic ?O2 measurement for the sample alone, and where the extent of the plateau reflects the innate buffering capability of the sample. A measure of the precision and accuracy of the data obtained is the fact that identical ?O2 values are obtained whether on a heating or cooling cycle of the sample + compatible atmosphere system.These techniques have been applied to measurements of the intrinsic ?O2 of spinels from peridotites and megacryst assemblages from Australia, West Germany and the U.S.A. Oxidation states range from ~- 0.25 log10 units more oxidized to 1 log10 unit more reduced than the iron-wüstite (IW) buffer. The overall reduced nature of the spinels and the range of ?O2's obtained are striking features of the data. One implication of the results is that the majority of mantle-derived magmas are initially highly reduced, and the relatively oxidized values observed at surface (~- 4–5 log10 orders more oxidized than IW) reflect late-stage alteration, perhaps by H2 loss (Sato, 1978).  相似文献   

8.
Experimental quartz solubilities in H2O (Anderson and Burnham, 1965, 1967) were used together with equations of state for quartz and aqueous species (Helgesonet al., 1978; Walther and Helgeson, 1977) to calculate the dielectric constant of H2O (?H2O) at pressures and temperatures greater than those for which experimental measurements (Heger, 1969; Lukashovet al., 1975) are available (0.001 ? P ? 5 kb and 0 ? T ? 600°C). Estimates of ?H2O computed in this way for 2 kb (which are the most reliable) range from 9.6 at 600°C to 5.6 at 800°C. These values are 0.5 and 0.8 units greater, respectively, than corresponding values estimated by Quist and Marshall (1965), but they differ by <0.3 units from extrapolated values computed from Pitzer's (1983) adaptation of the Kirkwood (1939) equation. The estimates of ?H2O generated from quartz solubilities at 2 kb were fit with a power function of temperature, which was then used together with equations and data given by Helgeson and Kirkham (1974a,b, 1976) Helgesonet al. (1981), and Helgeson (1982b, 1984) to calculate Born functions, Debye Hückel parameters, and the thermodynamic properties of Na+, K+, Mg++, Ca++, and other aqueous species of geologic interest at temperatures to 900°C.  相似文献   

9.
Distribution and isotopic composition (δ13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20–35 m), reached uniform concentrations (55 μM/l) in the monimolimnion (35–64 m) and again increased with depth in monimolimnion bottom sediments (>400 μM/kg below 1 m sub-bottom depth). The μ13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<?70 per mil) increased with vertical distance up the core (δ13C[CH4] = ?55 per mil at sediment surface). Monimolimnion δ13C[CH4] values (?55 to ?61 per mil) were greater than most δ13C[CH4] values found in the anoxic mixolimnion (92% of samples had δ13C[CH4] values between ?20 and ?48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50–60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4[C2H6 + C3H8] were high (250–620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in δ13C[CH4] and CH4(C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms.  相似文献   

10.
The behaviour of the ratios K2O/Na2O, SiO2/CO2, and SiO2H2O + CO2 + S in the alteration envelopes of a variety of epigenetic deposits is documented. It is concluded that the ratio K2O/Na2O is the most suitable for estimating proximity to ore during exploration drilling programs. The other two ratios are useful in indicating proximity to ore only under certain geological conditions. Before the use of ratios is contemplated in detailed exploration programs within a given mineral belt orientation studies should be carried out to determine the trend of the ratios with proximity to mineralization.  相似文献   

11.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

12.
Glasses from submarine lavas recovered by the ALVIN submersible from the Galapagos Spreading Center (GSC) near 86°W have been analyzed by electron microprobe for major elements and by high-temperature mass spectrometry for volatiles. The samples studied range in composition from basalt to andesite and are more evolved than typical MORBs. Previous studies indicate that they are related to normal MORB by extensive crystal fractionation in small, isolated magma chambers. The H2O, Cl and F contents of these lavas are substantially higher than any previously reported for MORBs. H2O, Cl and F abundances increase linearly with P2O5 content, which is used as an indicator of the extent of crystal fractionation. The Fe2O3(FeO + Fe2O3) ratios measured in the andesite glasses progressively decrease with increasing P2O5 content and are probably related to fractionation of Fe-Tioxides. Reduced carbon gas species, principally CH4 and CO, were discovered in these glasses. The presence of reduced carbon species in GSC glasses may be indicative of a more reduced oxidation state of the upper mantle than is commonly assumed.  相似文献   

13.
Experimentally reversed quartz solubilities at 250°C and at 250, 500 and 1000 bars yield values of the logarithm of the molality of aqueous silica of ?2.126, ?2.087 and ?2.038, respectively. Extrapolation of quartz solubility to the saturation pressure of water at 250°C results in a log molality of aqueous silica of-2.168. These solubility determinations and analyses of fluid pressures in geothermal systems indicate that pressure is significant when calculating quartz equilibrium temperatures from silica concentrations in waters of deep thermal reservoirs.The results of this investigation, combined with other reported quartz solubility measurements, yielded a pressure-sensitive “silica geothermometer” for fluids that have undergone adiabatic steam loss of t°C = 874 ? 0.156P(log mSi(OH)4 · 2H2O)2 + 411 log mSi(OH4 · 2H2O + 51 (log mSi(OH)4 · 2H2O)2 where P is the fluid pressure in bars and mSi(OH)4 · 2H2O represents the molality of aqueous silica measured in surface samples. The geothermometer is applicable to solutions in equilibrium with quartz from 180°C to 340°C and fluid pressures from H2O saturation to 500 bars.  相似文献   

14.
The stoichiometric, KHA1, and apparent, K'HA, constants for the ionization of a number of weak acids (NH4+, HSO4?, HF, H2O, B(OH)3, H2CO3, HCO3?, H3PO4, H2PO4?, HPO42, H3AsO4 H2AsO4? and HAsO42?) in seawater at 25°C diluted with water have been fitted to equations of the form (Millero, 1979). In KHA1 = In KHA + AS12 + BS where In KHA is the thermodynamic constant in water, S is the salinity, A and B are adjustable parameters. The validity of this equation in estuarine waters has been examined by using an ion pairing model (Millero and Schreiber, 1981). The calculated values of KHA1 and K'HA at S = 35%. are in good agreement with the measured values for all the systems examined. The equation used to extrapolate the measured values to pure water KHA predicted values that agreed with those determined by using the ion pairing model. The exception was the ionization of HPO42? due to the strong interactions of Ca2+ and Mg2+ with PO43?. The differences in the predicted values of KHA1 in seawater diluted with pure water and average river water were very small for all the acids except HPO42? (the maximum ΔpK = 0.96 in average river water). The larger difference in the KHA1 for HPO42? in river waters is due to the strong interactions of Ca2+ and PO43?.  相似文献   

15.
Electron microprobe analyses of the spinel mineral group, ilmenite and rutile have been carried out on part of the Luna 20 soil sample. The spinel group shows an almost continuous trend from MgAl8O4 to FeCr2O4 and a discontinuous trend from FeCr2O4 to Fe2TiO4. Well defined non-linear relationships exist within the spinel group for Fe-Mg substitution, for divalent (FeOFeO + MgO) versus trivalent (Cr2O3Cr2O3 + A12O3), and for divalent versus TiO2TiO2 + A12O3 + Cr2O3. For Cr-Al substitution the relationship is linear and is negative for Mg-rich spinel and positive for Fe-Ti rich spinel. In general a combination of aluminous-rich chromite and ulvöspinel in the Luna 16 samples, combined with the chromian-pleonaste in Apollo 14 define comparable major compositional trends to those observed in Luna 20. Ilmenite is present in trace amounts. It is exsolved from pleonaste and pyroxene, is present in subsolidusreduced ulvöspinel and has undergone reequilibration to produce oriented intergrowths of chromite + rutile. Primary ilmenite is among the most magnesian-rieh (6 wt.% MgO) yet found in the lunar samples. The high MgO, inferred high Cr2O3 concentrations and the iron content of rutile (2.5 wt.% FeO) suggest crystallization at high temperatures and pressures for some components of the Luna 20 soil.  相似文献   

16.
While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 · 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) · 5H2O, and basaluminite, Al4(SO4)(OH)10 · 5H2O. An examination of literature values shows that the log Ksp = ?85.4 for alunite and log Ksp = ?117.7 for basaluminite. In this report the log Ksp = ?7.0 is estimated for alunogen and log Ksp = ?17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3–5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4–7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals.Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption.  相似文献   

17.
18.
Studies of the pedogenic iron oxyhydroxides in suites of latest Holocene to middle Pleistocene soils formed on fluvial deposits of the transverse ranges, southern California, indicate that the content and composition of iron oxyhydroxide change in a systematic manner. Analysis of total secondary free iron oxides (dithionite extractable, Fe2O3d) and ferrihydrite (oxalate extractable, Fe2O3o) shows that (1) a single-logarithmic model (Y = a + b log X) or double logarithmic model (log Y = a + b log X), where Y is the total mass of pedogenic Fe oxides (g/cm2-soil column) and X is soil age, describes the rate of increase in Fe2O3d with time; (2) the Fe2O3d content correlates linearly with soil reddening and clay content; (3) the Fe2O3oFe2O3d ratio, which indicates the degree of Fe oxide crystallinity, is moderately high to very high (0.22–0.58) in middle Holocene to latest Pleistocene soils and progressively decreases to less than 0.10 in older soils; (4) the value of the Fe2O3oFe2O3d ratio also appears to be infuenced by climate; and (5) temporal changes in Fe oxide content and mineralogy are accompanied by related, systematic changes in clay mineralogy and organic matter content. These relationships are attributed to a soil environment that must initially favor ferrihydrite precipitation and/or organic matter-Fe complexation. Subsequent transformation to hematite causes increasingly intense reddening and a concomitant decrease in the Fe2O3oFe2O3d ratio. The results demonstrate that iron oxide analysis is useful for numerical age studies of noncalcic soils and shows potential as an indicator of paleoclimates.  相似文献   

19.
It is proposed that the ‘M value’ of an igneous rock should be 100Mg/(Mg + ΣFe) and that the ‘Mg value’ should be 100Mg/(Mg + Fe2+). A plea is made to standardize any necessary corrections for Fe2O3 so that Fe2O3(Fe2O3 + FeO) = 02 for basic rocks.  相似文献   

20.
Light hydrocarbon (C1-C3) concentrations in the water from four Red Sea brine basins (Atlantis II, Suakin, Nereus and Valdivia Deeps) and in sediment pore waters from two of these areas (Atlantis II and Suakin Deeps) are reported. The hydrocarbon gases in the Suakin Deep brine (T = ~ 25°C, Cl? = ~ 85‰, CH4 =~ 711) are apparently of biogenic origin as evidenced by C1(C2 + C3) ratios of ~ 1000. Methane concentrations (6–8 μl/l) in Suakin Deep sediments are nearly equal to those in the brine, suggesting sedimentary interstitial waters may be the source of the brine and associated methane.The Atlantis II Deep has two brine layers with significantly different light hydrocarbon concentrations indicating separate sources. The upper brine (T = ~ 50°C, Cl? = ~ 73‰, CH4 = ~ 155 μl/l) gas seems to be of biogenic origin [C1(C2 + C3) = ~1100], whereas the lower brine (T = ~ 61°C, Cl? = ~ 155‰, CH4 = ~ 120μl/l) gas is apparently of thermogenic origin [C1(C2 + C3) = ~ 50]. The thermogenic gas resulting from thermal cracking of organic matter in the sedimentary column apparently migrates into the basin with the brine, whereas the biogenic gas is produced in situ or at the seawater-brine interface. Methane concentrations in Atlantis II interstitial waters underlying the lower brine are about one half brine concentrations; this difference possibly reflects the known temporal variations of hydrothermal activity in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号