首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A clay-varve chronology based on 14 cross-correlated varve graphs from the Baltic Sea and a mean varve thickness curve has been constructed. This chronology is correlated with the Swedish Time Scale and covers the time span 11530 to 10250 varve years BP. Two cores have been analysed for grain size, chemistry, content of diatoms and changes in colour by digital colour analysis. The final drainage of the Baltic Ice Lake is dated to c . 10800 varve years BP and registered in the cores analysed as a decrease in the content of clay. This event can be correlated with atmospheric Δ14 C content and might have resulted in an increase in these values recorded between 11565 and 11545 years BP. The results of the correlation between the varve chronology from the Baltic Sea, the Greenland GRIP ice core and the atmospheric Δ14 C record indicate that c . 760 years are missing in the Swedish Time Scale in the part younger than c. 10250 varve years BP. A change in colour from a brownish to grey varved glacial clay recorded c . 10770 varve years BP is found to be the result of oxygen deficiency due to an increase in the rate of sedimentation in the early Preboreal. The first brackish influence is recorded c . 10540 varve years BP in the northwestern Baltic Sea and some 90 years later in the eastern Gotland Basin.  相似文献   

2.
The deglaciation pattern at Mt. Billingen, within the Middle Swedish end moraine zone, and its relationship with dramatic water level changes in the Baltic Ice Lake is a classic topic of Swedish Quaternary Geology. Based on data west of Mt. Billingen, the authors (in two earlier papers) presented a stratigraphic model associated with this subject. This study is an attempt to test the model east of Mt. Billingen, i.e. inside the Baltic Ice Lake itself. Lake Mullsjon is situated 30 km southeast of the drainage area of the Baltic Ice Lake and within the final drainage zone. About 8 m of Late Weichselian sediments (mostly varved clay) were recovered from the lake and analysed from different stratigraphic viewpoints, including lithology, grainsize, varve chronology, and pollen. These analyses show that the site was deglaciated in the later part of the Allerød Chronozone. Shortly thereafter the first drainage of the Baltice Ice Lake took place but without isolating Lake Mullsjon. After a short period of disturbed sedimentation varved clay continued to form as the glacier receded for another 120 varve years until the onset of the Younger Dryas cooling, as registered both in the pollen and in the varve stratigraphies. After c. another 120 varve years our analyses suggest that the Baltic Ice Lake was dammed once again. About 230 varve years of further ice readvance followed west of Mt. Billingen, while the ice margin in the east was more or less stationary. Rapid melting set in, at first producing coarse varves, but soon the clay was thin-varved and fine. This continued for 140 varve years until suddenly the lake became isolated. At this isolation thick beds of silty-sandy deposits were deposited on the lake floor. The isolation is dated to 10,400–10,500 14C years B.P., which corresponds to the assumed age of the final drainage of the Baltic Ice Lake. It was also isolated at the same time as lakes (on the same isobase) situated 20 m lower, but west of Mt. Billingen, were raised above sea level. This strongly suggests that Lake Mullsjön was isolated as an effect of the drainage of the Baltic Ice Lake. Significant differences between the clay-varve and the 14C chronologies are also presented.  相似文献   

3.
Ten cores consisting of varved clay from the northern part of Lake Peipsi in eastern Estonia have been correlated using varve thickness variations and specific marker varves into a 375-year floating varve chronology. Continuous sedimentation during gradual ice recession is concluded from a clear transition from proximal to distal varves. Cyclic variations in varve thickness are caused mainly by thickness changes of clayey winter layers. This is interpreted to indicate increased influx of finer material due to faster melting of the glacier. The cyclic pattern of thickness change is explained by alternating periods of increased and decreased melting of the ice. Simultaneous accumulation of varved clay in glacial Lake Peipsi and in the Luga and Neva basins of Russia is concluded from the good visual correlation between the mean varve thickness diagrams for the three chronologies. Because the varve chronologies from northwestern Russia have been tentatively correlated to the Swedish varve chronology, the timing of the clay accumulation in glacial Lake Peipsi is placed between c . 13 500 and 13 100 varve years BP.  相似文献   

4.
年纹层发育的湖泊沉积物可以提供独立的、绝对定年的时间标尺,为重建高分辨率的区域古地磁场长期变化主曲线提供了难得的条件;基于长而连续的湖泊沉积物年纹层时间标尺建立的区域磁偏角和磁倾角长期变化参考曲线大大增强了岩芯对比和古地磁定年结果的精确性。此外,满足特定条件的湖泊沉积物还可以提供古地磁场强度长期变化的记录并有助于反映宇宙成因核素(如^14C、^10Be等)产生速率的变化、太阳活动等信息;目前,湖泊沉积物纹层年代学时间标尺及古地磁研究程度较高的主要是瑞典、芬兰和北美一些地区,区域古地磁场长期变化主曲线的地理分布并不均匀,因此在全球范围内寻找长序列的、连续的年纹层发育的湖泊进行古地磁研究可以更好地理解仪器观测记录以前的地磁场行为。  相似文献   

5.
The increasing focus on the chronology of environmental and climatic changes of the last glacial-interglacial transition has led to several independent attempts to try to calibrate the 14C time-scale beyond the Holocene. The Late Weichselian Gotiglacial varved clays of the Swedish Time Scale could potentially be used for this purpose. The reliability of the Swedish Time Scale is discussed as well as different ways of using the Swedish varved clays for calibrating the 14C chronology. The strategy and initial results from an ongoing calibration project are presented. They show clearly that, if the right strategy is adopted, varved clay may be dated by accelerator mass spectrometry (AMS) 14C measurement of terrestrial macrofossils. A Late Weichselian 'event stratigraphy', including the Vedde Ash fall-out, is established for south Scandinavia using three dating categories: clay varve measurements, terrestrial macrofossil measurement, and lake sediment (including aquatic mosses) measurements. It suggests that a 14C chronology based on terrestrial organic remains is not consistent with the traditional Late Weichselian chronostratigraphy based on lake-sediment samples, and that 'clay varve years' exceed 'terrestrial 14C years' by c. 900 years at the end of, and by 1100–1200 years at the beginning of the Younger Dryas Chronozone. Further back in time, the time-scales appear to converge. These results are compared with other recently published calibration studies.  相似文献   

6.
Several new varve measurements have been made at Skövde and Tibro in the middle Swedish end moraine belt to the east of Mount Billingen, Västergötland. Some varve sequences are very long, containing 400–700 varves, but correlations are still difficult to make. This is probably due to stagnation and advances of the inland ice margin, indicated by disturbed varves and by sand or till on the clay. SE of Skövde a series of more than 560 varves is covered by a glaciofluvial delta. This delta must have been formed not far from the ice margin. After a slow ice recession at Tibro - 17 km in 400–600 years - advances are indicated by the stratigraphy in the northern parts of the area.  相似文献   

7.
Geological structures suggest that the Fennoscandian Shield was subjected to a higher seismicity at the end of the last glaciation than today. This article demonstrates the use of varved clay chronology for dating paleoseismic events. It is argued that the deposited annually layered glacial varves were sensitive to past ground movements. In the Stockholm area, the Erstavik varved clay chronology suggests four paleoseismic events: a first (I) dating from varve year 10,473 to 10,468 BP; a second (II) 10,451 to 10,445 BP; a third (III) 10,429 to 10,425 BP; and a fourth (IV) 10,409 to 10,404 BP. In De Geer's ‘old' (1940) chronology the first (I) dating corresponds with −1117 to −1112, the second (II) with −1095 to −1089, the third (III) with −1073 to −1069, and the fourth (IV) with −1053 to −1048. The most pronounced event was the one at around varve year 10,429 BP (varve −1073 in De Geer's ‘old' chronology). The recurrence time of about 20 years suggests a totally different seismic regime at the time of deglaciation than what exists today. It coincided with the period of maximum isostatic uplift. The complexity of the varved clay response to seismic events is also discussed.  相似文献   

8.
Long varve series in Finland   总被引:1,自引:0,他引:1  
Thinly varved 'postglacial' organic sediments are quite common in Finnish lakes, and attempts have been made to locate a site where they could be connected with the varved 'lateglacial' clays in order to he able to count the entire time since the ice retreat within one varved sequence. One promising site is Lake Valkiajärvi near Ruovesi in the Lake Region. The known sedimentary record covers nearly 9,500 years, which means that it starts very close to the time of the deglaciation of the Valkiajärvi area, around 9,600 B.P., or + 600 according to the original Finnish varve chronology (of Sauramo).  相似文献   

9.
Varved lake sediments can be used to set multiple environmental proxies within a calendar year time scale. We undertook a systematic survey of lakes in the Province of Värmland, west central Sweden, with the aim of finding continuous varved lake sediment sequences covering the majority of the Holocene. In Fennoscandia, such sediments have previously only been recorded in northern Sweden and in southern and central Finland. By following a selective process and fieldwork we discovered three new varved sites (i.e. Furskogstjärnet, Mötterudstjärnet and Kälksjön). We found that lakes with varved sediments have several common lake morphometry properties and lake catchment characteristics such as maximum water depth, maximum water depth/lake surface area ratio, catchment soil types, altitude and number of inflows. Varve chronologies, supported by AMS-14C dating and tephrochronology were established for two of the sediment profiles. These varve chronologies are the longest geological records with an annual resolution known to exist in Sweden. In Furskogstjärnet, the AMS- 14C dates based on terrestrial plant macrofossils at several levels deviate significantly from the varve based time-depth curve. In Motterudstjarnet, a fully reasonable time-depth model based on the 14C dates gives older ages in the lower part of the sequence compared to the varve chronology. These results highlight that seemingly acceptable AMS radiocarbon dates may be erroneous. They also point to the fact that varved lake sediments are reliable geological archives with respect to chronological control and accuracy. Thus, these archives should be of prime interest for studies of climate and environmental change undertaken with the aim of providing sub-decadal resolution proxy data sets.  相似文献   

10.
More than 50 varve-thickness diagrams, which were established from glacial varved clays in south-eastern Sweden were correlated with each other to form an 800-year long floating varve chronology. AMS |214|0C measurements on terrestrial macrofossils from the varved clays enabled synchronization of the record with other high-resolution archives. The synchronization indicates that the chronology spans between c. 13 150 and c. 12 350 calendar years BP and covers the later part of the Allerørd and the early part of the Younger Dryas. Calibrated radiocarbon dates, which were obtained on varved clays south of the floating chronology, indicate that the ice recession in south-eastern Sweden may have started during late Bølling. Our results indicate a longer time-span in varve years for the deglaciation than has been previously estimated  相似文献   

11.
湖泊沉积物年纹层的研究方法及其意义   总被引:12,自引:4,他引:8  
文章总结了前人对湖泊沉积物年纹层类型的划分,并根据年纹层的形成过程和组分特征分为3个大类,即碎屑年纹层、生物成因年纹层(如硅藻年纹层等)和化学成因年纹层(如方解石年纹层、菱铁矿年纹层、黄铁矿年纹层、蒸发盐年纹层等)。介绍了目前应用于湖泊沉积物年纹层研究的主要方法和技术包括:1)新鲜沉积物表面照相、X射线照相技术;2)光学显微镜观察;3)数字化图像分析;4)扫描电子显微镜技术等。而岩相学大薄片是目前年纹层研究工作中应用非常广泛的材料,对目前制作大薄片比较普遍采用的快速冷冻-冷冻干燥和水-丙酮-环氧树脂交换这两种方法进行了介绍并比较了各自的优劣。湖泊沉积物年纹层研究的古环境意义主要体现在两个方面,一是提供了高精度的纹层年代学时间标尺,在诸如气候突变事件的时限、大气14C浓度变化、火山灰层定年、古地磁场长期变化主曲线重建等方面有重要意义;二是年纹层性质研究如年纹层厚度和年纹层微相变化本身所蕴藏的高分辨率古气候环境变化信息,在太阳活动周期、ENSO等气候事件的研究中也有重要意义。最后,文章简单介绍了我国东北龙岗火山区四海龙湾玛珥湖沉积物中年纹层的特征并展望了其研究潜力。  相似文献   

12.
On the basis of observation of thin sections and 137Cs data, laminations in sediment are interpreted to be varves in Bolterskardet Lake (78°06' N, 16°01' E), Svalbard, the Arctic. Varves appear under a petrologic microscope as couplets of dark-silt and light-clay layers. The mechanism of varve formation is surmized as follows: each silt layer is the production of sediment inflow interpreted as mainly derived from snowmelt during summer; each clay layer was deposited in a stillwater environment during an ice-cover period. A light -clay layer provides an important index bed to identify the annual interface. The high accumulation rates, long period of ice cover, and topographically closed basin are probably all critical factors in forming and preserving varves. Varve thickness is known to be controlled mainly by summer temperature. The variation of varve thickness in Lake Bolterskardet can then be used to reconstruct summer temperature. The varve series show that there has been distinct decade-scale variability of summer temperature over the past 150 years. Warm periods occurred in the 1860s, around 1900, the 1930s, 1950s, and 1970s, and in the last 20 years. The varved sediments of Lake Bolterskarde preserve an ideal record for high-resolution paleoclimatic and paleoenvironmental research in this data-sparse area.  相似文献   

13.
The annually laminated, or varved, sediments of Lake Gościź, Poland, cover the last c. 12900 years, from Late Allerød up to the present. We have analysed the thickness of 1912 varves in this time-series by means of auto-correlation analysis, in the hope of obtaining information on patterns in past climate, for example patterns of 11 years, which might indicate a relation with solar activity. We analysed the total varve thickness and the thickness of the summer and the winter layer. Two single-bootstrap experiments confirmed the validity of the methods in general, but they indicated that the moving-window technique with overlapping windows hampered the assessment of statistical significance. Three global significance assessment procedures, taking into account the total number of auto-correlation coefficients (ACs) that is tested, showed significance of the ACs only at a lag of one year and only for the winter layer and the total varve. This auto-correlation with the preceding year may be explained by a factor internal to the lake, for instance some depositional mechanism. We found no indication of a relation between varve formation and the sun-spot cycle.  相似文献   

14.
Johnson, M. D. & Ståhl, Y. 2009: Stratigraphy, sedimentology, age and palaeoenvironment of marine varved clay in the Middle Swedish end‐moraine zone. Boreas, 10.1111/j.1502‐3885.2009.00124.x. ISSN 0300‐9483 Deglaciation of the Middle Swedish end‐moraine zone and age of the sediment in and between the moraines have been discussed for about a hundred years. The goal of this project was to determine the stratigraphy and age of the sediment in and between the moraines. Inter‐moraine flats are underlain by clay, 10–25 m thick, overlying thin sand and gravel or till on bedrock. The clay is overlain by a few metres of sand and gravel. Much of the clay beneath the flats consists of rhythmites that grade from grey to red and are 2–74 cm thick. Our interpretation of these rhythmites as being varves is supported by grain size and mineralogical and elemental variations. Foraminifera and ostracods show that the clay was deposited in an arctic marine environment, while radiocarbon dating of the microfossils indicates that the clay was deposited 12 150 cal. 14C years ago, during the Younger Dryas chronozone (YD). Most of the optical stimulated luminescence dates on the clay are much older, containing quartz sand that was insufficiently bleached. The stratigraphy indicates that the moraines are composed of YD clay pushed into ridge forms during ice‐front oscillations. It is not possible to determine how far north the Scandinavian Ice Sheet retreated prior to the YD advance. We neither support nor reject the suggestion that the ice margin retreated to the northern edge of Mt. Billingen during the Allerød, causing the Baltic Ice Lake to drain.  相似文献   

15.
《Quaternary Science Reviews》2007,26(5-6):678-689
A high-resolution study was performed on varved sediments from Lake Lehmilampi in eastern Finland. Varve data was collected by digital image analysis using standard 1.8 mm thick samples impregnated in epoxy and X-rayed. Climatic variability is imprinted on varve properties (varve thickness and accumulation of mineral and organic matter) during the last 2000 years. The cumulative counting error of the varve record is estimated as 2.3%. Qualitative comparison of varve parameters and residual Δ14C constructed from tree-rings revealed close correspondence between the two records, suggesting solar forcing on lake sedimentation. Classical climatic periods of the last millennia, Medieval Climate Anomaly (1060–1280 in the varve record) and Little Ice Age (cooler phases culminating in 1340, 1465, 1545, 1680, 1850 and also in 1930 in the varve record) are clearly evident in the varve record. At present the physical link between solar activity levels and lake sedimentation has not been established.  相似文献   

16.
In the Ångermanälven river valley in northern Sweden the Swedish geochronological time scale has been connected with the present (1978) by means of varved clayey-silty sediments. A 75-year-old problem has thereby been solved. Ragnar Lidén's previously calculated gap of 980 years between his youngest varve 7,522, found at Prästmon, and the historical year 1900 A.D. should be extended by 365 years. This implies that the zero year in Döviken (Indalsälven river valley), reviewed by Borell and Offerberg and commonly used in the Swedish time scale to mark the boundary between the finiglacial and postglacial epochs is Sweden, should be dated to 7,288 B.C. (9,238 B.P.) instead of the old date 6,923 B.C. given by Nilsson in 1960.  相似文献   

17.
Glen Roy, Lochaber is a key UK site for understanding Late Devensian environmental change, as it contains an annually-resolved glaciolacustrine varve record. This paper develops our understanding of varve sedimentation within Glen Roy through the examination of a new varve sequence located in a more proximal position on the Allt Bhraic Achaidh Fan, one of a series of major fans within the valley. This new varve record consists of c. 203 annual layers, much fewer years than at other sites in the Lochaber area probably due to five significant hiatuses within the record. Varve sediment characteristics and thickness are comparable to, but not statistically correlated with, other varve series that were used to construct a consolidated varve record for the area, the Lochaber Master Varve Chronology. Sedimentological characteristics, analysed by thin section micromorphology, suggest that varve thickness changes within the basin are controlled mainly by distance from the valley sides rather than the position of the ice margin during the Loch Lomond Readvance, as previously proposed.  相似文献   

18.
A 14C-dated magnetostratigraphy of absolute declination and inclination between 12500 and 10000 14C yr BP was recently developed for southern Sweden. Recently also the Swedish geochronological time-scale, based on c. 11 500 annually deposited clay-varves, was connected with the present. It should therefore be possible to compare the two chronologies with a reliable magnetostratigraphic record in an appropriate clay-varve section. We have found such a site within the Middle Swedish end-moraine zone. Statistical correlations between the two independently dated time-scales suggest that at 10500–10200 14Cy r BP the varve chronology exceeds the 14C chronology by the order of 500-600 varve yr. Other correlations indicate that the difference between the two chronologies was less at 11000 14C yr BP, and further correlations between the time-scales at 12000 14C yr BP suggest that the difference between the chronologies increased steadily from 12000 to 10000 14C yr BP. If these correlations are correct they imply that the 14C production rate increased steadily during the Late Weichselian.  相似文献   

19.
Eighteen sites in middle Sweden with sediments deposited during the brackish phase of the Yoldia Sea have been investigated with respect to the marine calcareous benthic fauna (i.e. foraminifera, ostracods and molluscs) and stable oxygen isotopes. At most sites the sediments consist of varved clay sequences which are correlated to the Swedish Time Scale and dated to the Early Preboreal. A marine benthic fauna has been recorded at 11 sites. The fauna occurs during c. 100 clay-varve years and the total length of the brackish phase is estimated to be 110-190 years. Near the inlet of saline water the fauna was dominated by the foraminifera Elphidium excavatum (Terquem) and further to the east the ostracod Cytheropteron montrosiense (Brady, Crosskey and Robertson) dominated. At shallower depths the fauna occurred during a shorter period owing to the formation of a stratified water column with a low-saline surface water. Very low δ 18 O c values were recorded, i.e. between -9.9‰ and -4.7‰ because of the influence of meltwater from the ice sheet. A different isotope fractionation between the foraminifera E. excavatum and the ostracod C. montrosiense was recorded.  相似文献   

20.
高分辨率古环境指示器--湖泊纹泥研究综述   总被引:24,自引:0,他引:24  
作为高分辨率古环境指示器,湖泊纹泥在重建晚第四纪特别是近代全球环境变化中具有特殊的地位和意义。纹泥携带的各种季节信息反映了区域生物学、地球化学、沉积学对季节性驱动力的响应,而且纹泥本身可以提供反映沉积环境和气候变化的精确计年,近30年来湖泊纹发展历史表明,纹泥的应用主要集中于以下三个方面:纹波计年、纹泥厚度变化和纹泥沉积物分析,其中纹 精确测年是一切应用的基础。可以看出,在古环境研究中,纹泥作为一  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号