首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The systematic sampling of the chemical composition of the groundwater from five karst springs (including an overflow spring) and one outflowing borehole have permitted to determine distinctive chemical changes in the waters that reflect the geochemical processes occurring in a carbonate aquifer system from southern Spain. The analysis of the dissolution parameters revealed that geochemical evolution of the karst waters basically depends on the availability of the minerals forming aquifer rocks and the residence time within the aquifers. In the three proposed scenarios in the aquifers, which include the preferential flow routines, the more important geochemical processes taking place during the groundwater flow from the recharge to the discharge zones are: CO2 dissolution and exsolution (outgassing), calcite net dissolution, calcite and dolomite sequential dissolution, gypsum/anhydrite and halite dissolution, de-dolomitization and calcite precipitation. A detailed analysis of the hydrochemical data set, saturation indices of the minerals and partial pressure of CO2 in the waters joined to the application of geochemical modelling methods allowed the elaboration of a hydrogeochemical model of the studied aquifers. The developed approach contributes to a better understanding of the karstification processes and the hydrogeological functioning of carbonate aquifers, the latter being a crucial aspect for the suitable management of the water resources.  相似文献   

2.
In order to identify the origin of the main processes that affect the composition of groundwater in a karstic aquifer, a hydrogeochemical and isotopic study was carried out of water from numerous observation wells located in Sierra de Gador, a semiarid region in SE Spain. Several natural and anthropogenic tracers were used to calculate groundwater residence time within this complex aquifer system. Analysis of major ions enabled the principal geochemical processes occurring in the aquifer to be established, and the samples were classified into four distinctive solute groups according to this criterion. Dissolution of carbonate rocks determines the chemical composition of less mineralized water. In another group, the concurrent dissolution of dolomite and precipitation of calcite in gypsum-bearing carbonate aquifer, where the dissolution of relatively soluble gypsum controls the reaction, are the dominant processes. Marine intrusion results in highly mineralized waters and leads to base exchange reactions. The groundwater enrichment of minor and trace elements allowed classification of the samples into two classes that are linked to different flow patterns. One of these classes is influenced by a slow and/or deep regional flow, where the temperature is generally elevated. The influence of sulphate reduces by up to 40 % the barium concentration due to the barite precipitation. Isotope data (T, 14C) confirm the existence of recent local flows, and regional flow system, and ages of ground water may reach 8000 years. The importance of gypsum dissolution in this aquifer is proved by the δ34S content.  相似文献   

3.
《Applied Geochemistry》2001,16(7-8):745-758
The physical–chemical characteristics of the groundwater in the Baza–Caniles detrital aquifer system indicate that a wide diversity of hydrochemical conditions exists in this semiarid region, defining geochemical zones with distinct groundwater types. The least mineralized water is found closest to the main recharge zones, and the salinity of the water increases significantly with depth towards the center of the basin. Geochemical reaction models have been constructed using water chemistry data along flow paths that characterize the different sectors of the aquifer system, namely: Quaternary aquifer, unconfined sector and shallow and deep confined sectors of the Mio–Pliocene aquifer. Geochemical mass–balance calculations indicate that the dominant groundwater reaction throughout the detrital system is dedolomitisation (dolomite dissolution and calcite precipitation driven by gypsum dissolution); this process is highly developed in the central part of the basin due to the abundance of evaporites. Apart from this process, there are others which influence the geochemical zoning of the system. In the Quaternary aquifer, which behaves as a system open to gases and which receives inputs of CO2 gas derived from the intensive farming in the area, the interaction of the CO2 with the carbonate matrix of the aquifer produces an increase in the alkalinity of the water. In the shallow confined sector of the Mio–Pliocene aquifer, the process of dedolomitisation evolves in a system closed to CO2 gas. Ca2+/Na+ cation exchange and halite dissolution processes are locally important, which gives rise to a relatively saline water. Finally, in the deep confined sector, a strongly reducing environment exists, in which the presence of H2S and NH+4 in the highly mineralized groundwater can be detected. In this geochemical zone, the groundwater system is considered to be closed to CO2 gas proceeding from external sources, but open to CO2 from oxidation of organic matter. The geochemical modeling indicates that the chemical characteristics of this saline water are mainly due to SO4 dissolution, dedolomitisation and SO4 reduction, coupled with microbial degradation of lignite.  相似文献   

4.
The hydrogeological unit of Aguadulce (Campo de Dalías aquifers, SE Spain) has a complex geometry. This fact, together with a continuous rise in water demand due to intensive agriculture and tourism create problems for groundwater quantity and quality. In this paper classic geochemical tools managed by means of GIS software and geochemical simulations are combined to delineate, identify and locate the possible physicochemical processes acting in the Aguadulce groundwater. Two main aquifers can be distinguished: the carbonate or lower aquifer of Triassic age, and the calcodetritic or upper aquifer of Plio-Quaternary age. Groundwaters from the latter are more saline and, assuming all chlorinity originates from seawater intrusion, the seawater contribution to their composition would be up to 7%. Nevertheless the carbonate aquifer appears not to be homogeneous: it is compartmentalised into 4 zones where different processes explain the different groundwaters compositions. Zone 4 samples (E margin of the carbonate aquifer) resemble those of the Plio-Quaternary aquifer, where calcite precipitation, dolomite and gypsum dissolution and some cation exchange (water–rock interaction) together with seawater–freshwater mixing occur. In contrast, water–rock interaction predominates in zones 1 and 3 of the carbonate aquifer. Moreover, zone 2 samples, located between zones 1 and 3, are explained by water–rock interaction in addition to mixing with Plio-Quaternary aquifer waters. The combination of geochemical simulations with GIS and hydrogeochemical analyses has proven to be effective in identifying and locating the different physicochemical processes in the aquifer areas, thus improving understanding of hydrogeochemistry in complex aquifers.  相似文献   

5.
Measured concentrations of environmental tracers in spring discharge from a karst aquifer in the Shenandoah Valley, USA, were used to refine a numerical groundwater flow model. The karst aquifer is folded and faulted carbonate bedrock dominated by diffuse flow along fractures. The numerical model represented bedrock structure and discrete features (fault zones and springs). Concentrations of 3H, 3He, 4He, and CFC-113 in spring discharge were interpreted as binary dilutions of young (0–8  years) water and old (tracer-free) water. Simulated mixtures of groundwater are derived from young water flowing along shallow paths, with the addition of old water flowing along deeper paths through the model domain that discharge to springs along fault zones. The simulated median age of young water discharged from springs (5.7  years) is slightly older than the median age estimated from 3H/3He data (4.4  years). The numerical model predicted a fraction of old water in spring discharge (0.07) that was half that determined by the binary-dilution model using the 3H/3He apparent age and 3H and CFC-113 data (0.14). This difference suggests that faults and lineaments are more numerous or extensive than those mapped and included in the numerical model.  相似文献   

6.
Following the accidental subsurface release of dense nonaqueous phase liquids (DNAPLs), spatial variability of physical and chemical soil/contaminant properties can exert a controlling influence on infiltration pathways and organic entrapment. DNAPL spreading, fingering, and pooling typically result in source zones characterized by irregular contaminated regions with complex boundaries. Spatial variability in aquifer properties also influences subsequent DNAPL dissolution and aqueous transport dynamics. An increasing number of studies have investigated the effects of subsurface heterogeneity on the fate of DNAPL; however, previous work was limited to the examination of the behavior of single-component DNAPL in systems with simple and well-defined aqueous and solid surface chemistry. From a DNAPL remediation point of view, such an idealized assumption will bring a large discrepancy between the designs based on the model simulation and the reality. The research undertaken in this study seeks to stochastically explore the influence of spatially variable porous media on DNAPL entrapment and dissolution profiles in the saturated groundwater aquifer. A 3D, multicomponent, multiphase, compositional model, UTCHEM, was used to simulate natural gradient water flooding processes in spatially variable soils. Porosity was assumed to be uniform or simulated using sequential Gaussian simulation (SGS) and sequential indicator simulation (SIS). Soil permeability was treated as a spatially random variable and modeled independently of porosity, and a geostatistical method was used to generate random distributions of soil permeability using SGS and SIS (derived from measured grain size distribution curves). Equally possible 3D ensembles of aquifer realizations with spatially variable permeability accounting of physical heterogeneity could be generated. Tetrachloroethene (PCE) was selected as a DNAPL representative as it was frequently discovered at many contaminated groundwater sites worldwide, including Thailand. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL source zone architecture under 96-L hypothetical PCE spill in heterogeneous media and stochastic analysis was conducted based on the simulated results. Simulations revealed considerable variations in the predicted PCE source zone architecture with a similar degree of heterogeneity, and complex initial PCE source zone distribution profoundly affected PCE recovery time in heterogeneous media when subject to natural gradient water flush. The necessary time to lower PCE concentrations below Thai groundwater quality standard ranged from 39 years to more than 55 years, suggesting that spatial variability of subsurface formation significantly affected the dissolution behavior of entrapped PCE. The temporal distributions of PCE saturation were significantly altered owing to natural gradient water flush. Therefore, soil heterogeneity is a critical factor to design strategies for characterization and remediation of DNAPL contaminated sites. The systematic and comprehensive design algorithm developed and described herein perhaps serves as a template for application at other DNAPL sites in Thailand.  相似文献   

7.
A large number of Mississippi Valley-Type (MVT) deposits are located within dissolution zones in carbonate host rocks. Some genetic models propose the existence of cavities generated by an earlier event such as a shallow karstification, that were subsequently filled with hydrothermal minerals. Alternative models propose carbonate dissolution caused by the simultaneous precipitation of sulfides. These models fail to explain either the deep geological setting of the cavities, or the observational features which suggest that the dissolution of carbonates and the precipitation of minerals filling the cavities are not strictly coeval. We present a genetic model inspired by the textural characteristics of MVT deposits that accounts for both the dissolution of carbonate and precipitation of sulfides and later carbonates in variable volumes. The model is based on the mixing of two hydrothermal fluids with a different chemistry. Depending on the proportion of the end members, the mixture dissolves and precipitates carbonates even though the two mixing solutions are both independently saturated in carbonates. We perform reactive transport simulations of mixing of a regional groundwater and brine ascending through a fracture, both saturated in calcite, but with different overall chemistries (Ca and carbonate concentrations, pH, etc). As a result of the intrinsic effects of chemical mixing, a carbonate dissolution zone, which is enhanced by acid brines, appears above the fracture, and another zone of calcite precipitation builds up between the cavity and the surrounding rock. Sulfide forms near the fracture and occupies a volume smaller than the cavity. A decline of the fluid flux in the fracture would cause the precipitation of calcite within the previously formed cavities. Therefore, dissolution of carbonate host rock, sulfide precipitation within the forming cavity, and later filling by carbonates may be part of the same overall process of mixing of fluids in the carbonate host rock.Editorial handling: C. Everett  相似文献   

8.
Multiple geochemical tracers [ion chemistry, stable isotopes of water, chlorofluorocarbons (CFC), tritium] and a 25-year-long record of discharge were used to understand residence times and flow paths of groundwater seeps in the fractured rock aquifer surrounding the Mission Tunnel, Santa Barbara, California. Tritium data from individual seeps indicate that seep waters are a mixture of >45-year-old (recharged prior to the nuclear bomb tests) and young groundwater. CFC data support this interpretation, however, a two-end member mixing model cannot completely explain the age tracer data. Microbial degradation and partial re-equilibration complicate the CFC signal. Spectral analysis of precipitation and groundwater seepage records shows that seepage lags precipitation by 3 months. This delay is related to the advancement of the wetting front and increasing the number of active flow paths. Additionally, the amount of seepage produced by precipitation is less during extended periods of drought than during normal or wet periods, suggesting antecedent conditions strongly affect flow through this fractured rock aquifer.  相似文献   

9.
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ~300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2? reduction to methanogenesis. In particular, decreasing SO4 2? and increasing δ34S of SO4 2? along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2? reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.  相似文献   

10.

The potential sources of recharge of both water and solutes to the Quaternary aquifer in the area between Ismailia and El Kassara canals in northeastern Egypt include seepage from the irrigation canals and conduits, return flow after irrigation in the cultivated fields, local precipitation, and the upward flow of groundwater from the underlying Miocene aquifer system. Water isotopes, solute concentrations, and sulfate isotopes were used to investigate the geochemical sources, reactions, and the impacts of the hydraulic connections among recharge sources. The obtained results indicate a minimal influence of the underlying Miocene aquifer as a water and solute source while old and new contributions from the irrigation canals represent the main sources of recharge. The chemical reactions responsible for the chemical constituents and salinity in the aquifer include silicate weathering, evaporite dissolution, and carbonate precipitation. Most of groundwater samples appear to lie at/or close to equilibrium with montmorillonite, kaolinite, and illite where clay minerals are quite common in the local soils of the Quaternary aquifer.

  相似文献   

11.
Tunnels play a key role in many transportation concepts. The swelling of clay–sulfate rocks leads to serious damage to many tunnels crossing such rock, producing great difficulties and high extra costs in tunnel engineering. The swelling is caused by the transformation of the sulfate mineral anhydrite into gypsum, entailing a 60% volume increase. The transformation involves anhydrite dissolution in water, transport of the solution with groundwater flow, and gypsum precipitation at a different location. Therefore, the knowledge of groundwater flow systems at the tunnel and adjacent areas is essential to better understand the swelling processes. The present study investigates the groundwater flow systems at the Chienberg tunnel in Switzerland before and after the tunnel excavation, based on numerical flow modeling. The models include faults and the hydrostratigraphic layering in the subsurface to assess the role of the hydrogeological setting. The results of this study indicate effects on groundwater flow caused by the tunneling, which may trigger rock swelling by favoring anhydrite dissolution and gypsum precipitation, including (1) increase of flow rates around the tunnel, (2) broadened, shifted and more distributed capture zones leading to a change in origin and age of groundwater, (3) access of groundwater from preferential flow paths (e.g. faults) due to the drainage effect of the tunnel, and (4) change in geochemical equilibrium conditions because of decreased pore water pressures in the tunnel area.  相似文献   

12.
 The Judea Group, a limestone and dolomite karstic aquifer of late Albian–Turonian age, is one of the most important sources of water in Israel. In the western part of the country, the Judea Group aquifer is also known as the Yarkon–Taninim basin. In the northern Negev, the Judea Group is a recipient for fresh water flowing southward from the Hebron Mountains and of brackish paleowater flowing northward from Sinai. Very little is known of the hydraulic properties of this aquifer. In order to outline assumed natural flow paths that existed in this karstic environment prior to groundwater exploitation, use was made of lithological, structural, and paleomorphological features. A detailed hydrogeological conceptual model of the Judea Group aquifer in northern Negev was established by the geological interpretation of high-resolution seismic reflection and by analysis of lithological evidence from boreholes. Isopach, isolith-contour, and isolith-ratio maps were compiled for the main lithological components. Increase in transmissivity values is inversely proportional with the cumulative thickness of argillaceous components. The lithological and hydraulic evidence provides the basis for subdividing the subsurface into distinctive permeability zones for the upper and lower sections of the aquifer; for outlining possible preferential groundwater flow paths for both subaquifers; and for improving understanding of groundwater-salinty variations that result from lithological variability, direction of groundwater flow paths, groundwater flow rates, and the duration of rock/water interactions. In an earlier conceptual model of the basin, the Judea Group aquifer was regarded as a continuous and undisturbed entity. The present study reveals an intricate groundwater flow pattern that is controlled by lithological and structural factors that create zones of preferential flow. This interpretation bears on the overall evaluation of groundwater resources and their management and exploitation. Received, December 1996 · Revised, October 1997, June 1998 · Accepted, July 1998  相似文献   

13.
Methods are described for developing geochemical reaction models from the observed chemical compositions of ground water along a hydrologic flow path. The roles of thermodynamic speciation programs, mass balance calculations, and reaction-path simulations in developing and testing reaction models are contrasted. Electron transfer is included in the mass balance equations to properly account for redox reactions in ground water. The mass balance calculations determine net mass transfer models which must be checked against the thermodynamic calculations of speciation and reaction-path programs. Although reaction-path simulations of ground-water chemistry are thermodynamically valid, they must be checked against the net mass transfer defined by the mass balance calculations. An example is given testing multiple reaction hypotheses along a flow path in the Floridan aquifer where several reaction models are eliminated. Use of carbon and sulfur isotopic data with mass balance calculations indicates a net reaction of incongruent dissolution of dolomite (dolomite dissolution with calcite precipitation) driven irreversibly by gypsum dissolution, accompanied by minor sulfate reduction, ferric hydroxide dissolution, and pyrite precipitation in central Florida. Along the flow path, the aquifer appears to be open to CO2 initially, and open to organic carbon at more distant points down gradient.  相似文献   

14.
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.  相似文献   

15.
Travel times and flow paths of groundwater from its recharge area to drinking-water production wells will govern how the quality of pumped groundwater responds to contaminations. Here, we studied the 180 km2 Ammer catchment in southwestern Germany, which is extensively used for groundwater production from a carbonate aquifer. Using a 3-D steady-state groundwater model, four alternative representations of discharge and recharge were systematically explored to understand their impact on groundwater travel times and flow paths. More specifically, two recharge maps obtained from different German hydrologic atlases and two plausible alternative discharge scenarios were tested: (1) groundwater flow across the entire streambed of the Ammer River and its main tributaries and (2) groundwater discharge via a few major springs feeding the Ammer River. For each of these scenarios, the groundwater model was first calibrated against water levels, and subsequently travel times and flow paths were calculated for production wells using particle tracking methods. These computed travel times and flow paths were indirectly evaluated using additional data from the wells including measured concentrations of major ions and environmental tracers indicating groundwater age. Different recharge scenarios resulted in a comparable fit to observed water levels, and similar estimates of hydraulic conductivities, flow paths and travel times of groundwater to production wells. Travel times calculated for all scenarios had a plausible order of magnitude which were comparable to apparent groundwater ages modelled using environmental tracers. Scenario with groundwater discharge across the entire streambed of the Ammer River and its tributaries resulted in a better fit to water levels than scenario with discharge at a few springs only. In spite of the poorer fit to water levels, flow paths of groundwater from the latter scenario were more plausible, and these were supported by the observed major ion chemistry at the production wells. We concluded that data commonly used in groundwater modelling such as water levels and apparent groundwater ages may be insufficient to reliably delineate capture zones of wells. Hydrogeochemical information relating only indirectly to groundwater flow such as the major ion chemistry of water sampled at the wells can substantially improve our understanding of the source areas of recharge for production wells.  相似文献   

16.
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.  相似文献   

17.
The geochemical processes and thermodynamic behavior of dissolved and precipitated carbonate minerals controlling the hydrochemistry of an aquifer in the seawater/freshwater mixing zone of a small island are identified. Field and laboratory analyses, geochemical modeling (PHREEQC) and multivariate statistical analysis (MSA) provide a quantitative interpretation for the geochemistry of the carbonate-dominated aquifer. Geochemical analyses and modeling results show that dissolution and re-precipitation of CaCO3 are the prevalent processes governing geochemical reactions in the mixing zone. Furthermore, this was confirmed by coherent statistical output that incorporates Principle Component Analysis (PCA) and k-means Cluster Analysis (k-CA). Generally, the composition of the lowland sandy soil was rather homogeneous and was primarily composed of quartz, aragonite, calcite and Mg-calcite. Thermodynamic model calculations indicate that the carbonate minerals calcite, aragonite and dolomite are supersaturated in the mixing zone. Nevertheless, Powder X-ray Diffraction (PXRD) and Scanning Electron Microscope (SEM) examination verified the occurrence of low-Mg-calcite (LMC) and the absence of dolomite, attributed to thermodynamic/kinetic hindrance, cation disorder and the presence of dolomite crystal growth rate inhibitors (such as SO4). The results suggest that dissolution of aragonite and precipitation of LMC drives the solid phase geochemistry in the small tropical island aquifer.  相似文献   

18.
Source of salinity in the groundwater of Lenjanat Plain,Isfahan, Iran   总被引:1,自引:1,他引:0  
The present study aimed at identifying the salinity source in the groundwater of Lenjanat Plain. To do so, non-isotopic geochemical methods were employed: groundwater samples were collected seasonally from 33 wells widespread in the area, and physicochemical parameters as well as major and minor elements were measured in the 132 samples. The data collected from the field and laboratory measurements were interpreted through statistical and hydrogeochemical graphs, mass ratios and saturation indexes obtained from modeling. The results revealed that hydrogeochemical properties of the study aquifer were controlled by rock/water interactions including ion exchange, dissolution of evaporation deposits (halite and gypsum) and precipitation/dissolution of carbonates. Based on the values of Cl/Br ratio in Lenjanat groundwater (329–4,492), dissolution of evaporation deposits in aquifer was the main cause for groundwater salinity. Considering the Lenjanat groundwater geochemical properties, the data confirm the reported Cl/Br ratios for groundwater affected by the dissolution of evaporation deposits (Cl/Br > 300) and overlaps with the range of Cl/Br ratios for domestic sewage effluent groundwater. Selecting the best chemical components and their ratios in non-isotopic geochemical methods provides an accurate distinction between sources of groundwater salinity.  相似文献   

19.
Continental Flood Basalts (CFB) occupy one fourth of the world’s land area. Hence, it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development. A model assisted isotope, geochemical, geospatial and geophysical study was conducted to understand the monsoonal characteristics, recharge processes, renewability and geochemical evolution in one of the largest continental flood basalt provinces of India. HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics. Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge. Lumped parameter models (LPM) were employed to quantify the mean transit time (MTT) of groundwater. Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path. A geophysical model was used to understand the geometry of the aquifer. The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea. Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned; (i) quick and direct recharge by precipitation through fractured and weathered basalt, (ii) low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge. Tritium data showed that the groundwater is a renewable source and have shorter transit times (from present day to <30 years). The hydrogeochemical study indicated multiple sources/processes such as: the minerals dissolution, silicate weathering, ion exchange, anthropogenic influences etc. control the chemistry of the groundwater. Based on the geo-electrical resistivity survey, the potential zones (weathered and fractured) were delineated for the groundwater development. Thus, the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.  相似文献   

20.
Hydrogeochemical processes that accompany seawater intrusion in coastal aquifers can alter the resulting water quality and are important ingredients in coastal aquifer management. The presence of dissolution–precipitation reactions and ion exchange in the mixing zone of the Biscayne aquifer (FL, USA) are suggested based on changes in major ion concentrations and mineral saturation indices (SI). Major ion concentrations from 11 groundwater samples are compared with theoretical mixing between freshwater and seawater. PHREEQC code was used to calculate saturation indices of the samples with respect to common phases in the Biscayne aquifer. High Ca2+ and HCO3 ? content of the samples is typical of waters in contact with carbonate aquifers. Water quality of the samples is mainly attributed to mixing and precipitation–dissolution reactions with calcite and dolomite. The samples were saturated with calcite (SI ~ 0) and undersaturated for dolomite (SI < 0), while a few samples showed dolomite saturation. Because gypsum and halite SI could be predicted by theoretical mixing, reactions with those minerals, if present, are thought to be insignificant. In the active intrusion areas, cation exchange also appears to modify water quality leading to excess Ca2+, but depleted Na+, Mg2+ and K+ concentrations. On the other hand, samples from previous intrusion areas plotted very close to the theoretical mixing line and approached equilibrium with the seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号