首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geodinamica Acta》2002,15(1):93-101
The first numerical age determinations from radiocarbon dating establish the chronology of glacial events in Redes Natural Park (Cantabrian Mountain, NW Spain). A core drilled in an ice-dammed deposit provided a minimum age of 28 990 ± 230 years BP for the maximum glacial expansion (phase I). Another core from a cirque bottom-fill provided organic sediment with 20 640 ± 300 years BP, a minimum age for the first glacial retreat (phase II). Radiometric dating of proglacial deposits interpreted as synchronous with the last glacial maximum phase in neighbouring Comella basin (Picos de Europa), yield ages of 40 480 ± 820 years BP. The chronological data presented in this work are consistent with the model of glacier evolution established in the Pyrénées, with a glacial maximum phase for the last glacial period older than 18 ka.  相似文献   

2.
The glacial history of the Tagliamento morainic amphitheater (southeastern Alpine foreland, Italy) during the last glacial maximum (LGM) has been reconstructed by means of a geological survey and drillings, radiocarbon dating and pollen analysis in the amphitheater and in the sandur. Two phases of glacial culmination, separated by a distinct recession, are responsible for glacial landforms and related sediments in the outer part of the amphitheater. The age of the younger advance fits the chronology of the culmination of the last glaciation in the Alps, well established between 24 and 21 cal ka BP (20 to 17.5 14C ka BP), whereas the first pulse between 26.5 and 23 cal ka BP (22 to 21 14C ka BP), previously undated, was usually related to older (pre-LGM) glaciations by previous authors. Here, the first pulse is the most extensive LGM culmination, but is often buried by the subsequent pulse. The onset and final recession of the late Würm Alpine glaciation in the Tagliamento amphitheater are synchronous with the established global glacial maximum between 30 and 19 cal ka BP. The two-fold LGM glacial oscillation is interpreted as a millennial-scale modulation within the late Würm glaciation, caused by oscillations in inputs of southerly atmospheric airflows related to Dansgaard-Oeschger cycles. Phases of enhanced southerly circulation promoted increased rainfall and ice accumulation in the southern Alps.  相似文献   

3.
We present atmospheric simulations of three different time slices of the late Quaternary using the ECHAM 3 general circulation model in T42 resolution. In this work we describe the results of model runs for the time slices 6000 years BP (last climate optimum), 21 000 BP (last glacial maximum) and 115 000 years BP (glacial inception). Although the solar insolation is known for all time slices, a complete data set of the other boundary conditions which are necessary for running the atmospheric model exists only for the last glacial maximum in the form of the CLIMAP reconstruction. For the other two time slices, which are interglacial states like the modern climate, sea surface temperatures, land albedo and ice sheet topography are kept at modern values and only the solar insolation is changed appropriately. The response of the model to solar insolation changes is quite reasonable. The modelled anomalies are small and roughly opposite in sign for 6000 BP and 115 000 BP, respectively. In the case of last glacial maximum, the glacial ice sheet topography and ice albedo produce a much larger climate anomaly in the model. However, to enable a real test of model performance under glacial boundary conditions, the CLIMAP sea surface temperatures, which are now known to be partly inaccurate, should be replaced by an updated “state-of-the-art” reconstruction.  相似文献   

4.
天山乌鲁木齐河源末次冰期冰川沉积光释光测年   总被引:6,自引:5,他引:1  
乌鲁木齐河源地区是中国冰川遗迹保存最丰富、地貌最典型的区域之一,是根据冰川遗迹重建第四纪冰川历史的理想地区。大量的研究工作以及技术测年结果也使其成为试验冰川沉积光释光(optically stimulated luminescence,OSL)测年可行性的理想地点。共采集了6个冰碛及上覆黄土样品用于光释光测年。提取38~63 μm的石英颗粒,运用SAR-SGC法测试等效剂量。各种检验表明测试程序是适用的。通过地貌地层关系、重复样品、已有年代的对比等方法,检验该地冰川沉积OSL测年的可行性。结果表明,OSL年代结果与地貌地层新老关系非常吻合,与已有的其他测年技术的年代结果也具可比性,表明这些样品的OSL信号在沉积之前晒退较好,OSL年代是可信的。冰川观测站侧碛垄的OSL年代为14.8±1.2 ka;9号冰川支谷口附近冰碛的OSL年代为13.5±1.1 ka和17.2±1.3 ka;上望峰冰碛的OSL年代为20.1±1.6 ka。综合OSL年代结果与此前其他测年结果,这几套冰碛垄形成于深海氧同位素MIS 2阶段应该是比较统一的认识。上望峰冰碛上覆黄土的OSL年代(10.5±0.8 ka)也印证了该结论。OSL年代指示上望峰冰碛对应于末次冰期最盛期,冰川观测站和9号冰川支谷谷口冰碛对应于晚冰期。下望峰冰碛的OSL年代为36.3±2.8 ka,对应于MIS 3阶段。下望峰冰碛的形成时代,仍有待更多沉积学以及测年工作进一步确定。  相似文献   

5.
The deglaciation history of the Escarra and Lana Mayor glaciers (Upper Gállego valley, central Spanish Pyrenees) had been reconstructed on the basis of detailed geomorphological studies of glacier deposits, sedimentological and palynological analyses of glacial lake sediments and an accelerator mass spectrometry (AMS) 14C chronology based on minimum ages from glacial lake deposits. The maximum extent of the Pyrenean glaciers during the last glaciation was before 30 000 yr BP and pre‐dated the maximum advances of the Scandinavian Ice Sheet and some Alpine glaciers. A later advance occurred during the coldest period (around 20 000 yr BP), synchronous with the maximum global ice extent, but in the Pyrenees it was less extensive than the previous one. Later, there were minor advances followed by a stage of debris‐covered glaciers and a phase of moraine formation near cirque backwalls. The deglaciation chronology of the Upper Gállego valley provides more examples of the general asynchroneity between mountain and continental glaciers. The asynchroneity of maximum advances may be explained by different regional responses to climatic forcing and by the southern latitude of the Pyrenees. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Quaternary alluvial and colluvial sediments infill major river valleys and form alluvial fans and colluvium-filled bedrock depressions on the range fronts and within the Mount Lofty Ranges of southern Australia. A complex association of alluvial successions occurs in the Sellicks Creek drainage basin, as revealed from lithostratigraphy, physical landscape setting and optically stimulated luminescence (OSL) ages. Correlation of OSL ages with the Marine Oxygen Isotope record reveals that the alluvial successions represent multiple episodes of alluvial sedimentation since the penultimate glaciation (Marine Isotope Stage 6; MIS 6). The successions include a penultimate glacial maximum alluvium (Taringa Formation; 160?±?15?ka; MIS 6), an unnamed alluvial succession (42?±?3.2?ka; MIS 3), a late last glacial colluvial succession within bedrock depressions (ca 15?ka; MIS 2) and a late last glacial alluvium (ca 15?ka; MIS 2) in the lowest, distal portion of Sellicks Creek. In addition, the Waldeila Formation, a Holocene alluvium (3.5?±?0.3?ka; MIS 1), and sediments deposited during a phase of Post-European Settlement Aggradation (PESA) are also identified. The age and spatial distribution of the red/brown successions, mapped as the Upper Pleistocene Pooraka Formation, directly relate to different topographic and tectonic settings. Neotectonic uplift locally enhanced erosion and sedimentation, while differences in drainage basin sizes along the margin of the ranges have influenced the timing and delivery of sediment in downstream locations. Close to the Willunga Fault Scarp at Sellicks Creek, sediments resembling the Pooraka Formation have yielded a pooled mean OSL age of 83.9?±?7?ka (MIS 5a) corroborating the previously identified extended time range for deposition of the formation. Elsewhere, within major river valleys, the Pooraka Formation was deposited during the last interglacial maximum (128–118?ka; MIS 5e). In general, alluviation occurred during interglacial and interstadial pluvial events, while erosion predominated during drier glacial episodes. In both cases, contemporaneous erosion and sedimentation continued to affect the landscape. For example, in the Sellicks Creek drainage basin, which lies across an actively uplifting fault zone, late glacial age sediments (MIS 2) occur within the ranges and near the distal margin of the alluvial fan complex. OSL dating of the alluvial successions reported in this paper highlights linkages between the terrestrial and marine environments in association with sea-level (base-level) and climatic perturbations. While the alluvial successions relate largely to climatically driven changes, especially in major river valleys, tectonics, eustasy, geomorphic setting and topography have influenced erosion and sedimentation, especially on steep-sloped alluvial fan environments.
  1. KEY POINTS
  2. Luminescence dating of the Sellicks Creek alluvial fan complex reveals that sedimentation occurred predominantly during the later stages of glacial cycles accompanying lower sea-levels than present.

  3. Luminescence dating confirms that the stratigraphically lower portions of the Pooraka Formation are beyond the range of radiocarbon dating.

  4. Upper Pleistocene alluvial fan sedimentation at Sellicks Creek correlates with pluvial events in southeastern Australia.

  相似文献   

7.
晚第四纪MIS6以来柴达木盆地成盐作用对冰期气候的响应   总被引:2,自引:0,他引:2  
气候是控制柴达木盆地盐类沉积的主要因素之一,但是其作用机制尚待明确。作者以柴达木盆地察汗斯拉图盐湖的3个含盐剖面为研究对象,采用多接收电感耦合等离子质谱(MC-ICP-MS)铀系测年测定其沉积时代,并通过X射线粉晶衍射(XRD)分析测定其盐类矿物种类。铀系测年显示D18剖面石盐和芒硝层的沉积时代为13.1±2.0 ka BP~15.9±2.5 ka BP,其中芒硝沉积年代属于末次冰期MIS2晚期;MXK2剖面芒硝层的沉积时代分别为131.7±39.5 ka BP和158.3±10.8 ka BP,D12剖面芒硝层的沉积时代分别为166.6±20.2 ka BP和198.0±20.6 ka BP,可以对应于倒数第二次冰期MIS6。XRD分析确定了3个剖面的盐类矿物主要为芒硝、石盐和石膏。综合多个盐湖晚第四纪成盐数据,本文认为倒数第二次冰期MIS6和末次冰期MIS2是柴达木盆地晚第四纪重要的成盐期,冰期的冷干气候有利于石盐和芒硝等盐类沉积。柴达木盆地"冰期成盐"的根本原因,是由于冰期环境下盆地周边山体冰川规模的扩张以及干冷的冰期气候,共同造成了盐湖补给水量的减少。此外,晚第四纪MIS6和MIS2的冰期降温也是导致盆地中冷相盐类沉积的直接原因。  相似文献   

8.
This paper assesses the age of the Tagliamento Morainic Amphitheatre (northeast Italy), one of the largest morainic bodies in the piedmont area of northern Italy, using new stratigraphical and thermoluminescence (TL) data obtained from a site located on the inner flank of the amphitheatre. Two samples from a 12-m-thick stratum of fluviolacustrine, non-varved, fine sand provided TL ages of approximately 110 ± 16 ka BP. This sandy layer lies below a 6-m-thick, massive (non-laminated), clayey stratum. It is hypothesised that a large but short-lived lake formed during the interglacial phase separating the penultimate and last glaciations. Assigning a ‘Riss’ age to the southeastern part of the amphitheatre therefore regains credence. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
The loess/paleosol sequences of Central Asia are continuous terrestrial records of the Quaternary period and enable detailed comparison with paleoclimatic archives such as marine and ice core records in order to reconstruct regional and global paleoclimatic and paleoecological development during the past 130?000 years. Thermoluminescence (TL) and infrared stimulated luminescence (IRSL) dating methods are applied to the extensively studied loess/paleosol sequence of the section at Darai Kalon/Chashmanigar, Tadjikistan, in order to determine a more accurate chronological framework and climatostratigraphic reconstruction for the last interglacial/glacial cycle. Luminescence dating suggests that the loess above the first pedocomplex from the top, PC1, accumulated during the last glacial period. A high accumulation rate of up to 1.20?m per 1000 years was determined for the last glacial loess, especially for the uppermost 5–8?m. PC1 formed during the last interglacial period (oxygen-isotope stage 5). The loess between PC1 and PC2 is designated to be of penultimate glacial deposition age. Infrared stimulated luminescence and TL age estimates are in agreement to 80?000 years before present (BP), indicating a long-distance transport of the aeolian dust prior to deposition. The upper numerical age-limit range is between 300?000 and 450?000 years. However, reliable dating of the loess older than 130?000 years is not possible due to age scatter between samples and an inadequate increase of paleodose with depth. This high-resolution dating study underlines the importance of the section at Darai Kalon and indicates that it is one of the most continuous loess/paleosol records of the Northern Hemisphere. The chronological results are particularly important for the reconstruction of the human evolution in Central Asia, suggesting much older age estimates than previously obtained for most of the archeological key sites associated with PC5 and PC4 in Tadjikistan.  相似文献   

10.
Improved chronological control on the penultimate advance of the Cordilleran Ice Sheet in northwest Canada (the Reid glaciation) is required for a better understanding of late Quaternary palaeoclimatic and palaeoenvironmental change in eastern Beringia. However, reliable dating of glaciation events beyond the last glacial maximum is commonly hindered by a lack of directly dateable material. In this study we (i) provide the first combined minimum and maximum age constraint on the Reid glaciation at Ash Bend, its reference locale in the Stewart River valley, northwestern Canadian Cordillera, using single-grain optically stimulated luminescence dating of quartz; and (ii) compare the timing of the Reid glaciation with other penultimate ice sheet advances in the region with the aim of establishing improved glacial reconstructions in eastern Beringia. We obtain ages of 158 ± 18 ka and 132 ± 18 ka for glaciofluvial sands overlying and underlying the Reid till, respectively. These ages indicate that the Reid advance, at its reference locale, occurred during MIS 6. This precludes an earlier MIS 8 age, and suggests that the Reid advance may have been synchronous with the Delta glaciation of central Alaska, and is likely correlative with the Mirror Creek glaciation in southern Yukon.  相似文献   

11.
This paper presents a revised glacial chronology for the Lahul Himalaya and provides the most detailed reconstruction of former glacier extents in the western Himalayas published to date. On the basis of detailed geomorphological mapping, morphostratigraphy, and absolute and relative dating, three glaciations and two glacial advances are constrained. The oldest glaciation (Chandra glacial stage) is represented by glacially eroded benches and drumlins (the first to be described from the Himalaya) at altitudes of >4300 m and indicates glaciation on a landscape of broad valleys that had minimal fluvial incision. The second glaciation (Batal glacial stage) is represented by highly weathered and disssected lateral moraines and drumlins representing two phases of glaciation within the Batal glacial stage (Batal I and Batal II). The Batal stage was an extensive valley glaciation interrupted by a readvance that produced superimposed bedforms. Optically stimulated luminescence (OSL) dating, indicates that glaciers probably started to retreat between 43400 ± 10300 and 36900 ± 8400 yr ago during the Batal stage. The Batal stage may be equivalent to marine Oxygen Isotope Stage 4 and early Oxygen Isotope Stage 3. The third glaciation (Kulti glacial stage), is represented by well-preserved moraines in the main tributary valleys that formed due to a less-extensive valley glaciation when ice advanced no more than 12 km from present ice margins. On the basis of an OSL age for deltaic sands and gravels that underlie tills of Kulti age, the Kulti glaciation is younger than 36900 ± 8400 yr ago. The development of peat bogs, having a basal age of 9160 ± 70 14C yr BP possibly represents a phase of climatic amelioration coincident with post-Kulti deglaciation. The Kulti glaciation, therefore, is probably equivalent to all or parts of late Oxygen Isotope Stage 3, Stage 2 and early Stage 1. Two minor advances (Sonapani I and II) are represented by small sharp-crested moraines within a few kilometres of glacier termini. On the basis of relative weathering, the Sonapani advance is possibly of early mid-Holocene age, whereas the Sonapani II advance is historical. The change in style and extent of glaciation is attributed to topographic controls produced by fluvial incision and by increasing aridity during the Quaternary. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is challenging because of the rarity of calcareous (micro‐) fossils and the recycling of fossil organic matter. Consequently, radiocarbon (14C) ages of the acid‐insoluble organic fraction (AIO) of the sediments bear uncertainties that are difficult to quantify. Here we present the results of three different methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk samples yielded age reversals down‐core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom‐rich unit yielded similar uncorrected 14C ages between 13 517 ± 56 and 11 543 ± 47 years before present (a BP). Correction of these ages by subtracting the core‐top ages, which probably reflect present‐day deposition (as indicated by 210Pb dating of the sediment surface at one core site), yielded ages between ca. 10 500 and 8400 cal. a BP. Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1300 a indicated deposition of the diatom‐rich sediments between 14 100 and 11 900 cal. a BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka for the diatom‐rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves. As a third dating technique we applied conventional radiocarbon dating of the AIO included in acid‐cleaned diatom hard parts extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5111 ± 38 and 5106 ± 38 a BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom‐rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes elsewhere on the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Acequias (irrigation channels and ditches) were used by Spanish settlers, their descendants, and Native Americans in New Mexico. Several such features were recently excavated in Santa Fe, but material for numeric dating was difficult to find. Therefore, for this high‐energy‐deposition irrigation‐feature setting we applied optically stimulated luminescence (OSL) sediment dating methods to determine the timing of last filling of some of these acequias. We report multigrain single‐aliquot quartz (MGSAQ) OSL dating results and the first single‐grain quartz (SGQ) OSL dating results for irrigation features. One sample yielded an average age of 96 ± 13 yr, consistent with the maximum expected age of 127 yr (before 2007). An OSL age of 175 ± 15 yr for another sample delimits a sedimentation event since the first construction of that feature ca. 300 yr ago. A sample known to be younger than 400–450 yr but predating the mid‐19th century gave an SGQ age of 376 ±31 yr. These results indicate that: (1) Regional quartz in New Mexico is highly favorable to OSL dating; (2) in this setting, SGQ OSL dating is preferred to MGSAQ dating; and (3) for the last 500–600 yr, SGQ OSL dating in such settings is preferred to 14C dating because OSL dating lacks those ambiguities inherent in converting 14C ages to calendar years. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The combined Rhone and Aare Glaciers presumably reached their last glacial maximum (LGM) extent on the Swiss Plateau prior to 24 ka. Two well-preserved, less extensive moraine stades, the Gurten and Bern Stade, document the last deglaciation of the Aare Valley, yet age constraints are very scarce. In order to establish a more robust chronology for the glacial/deglacial history of the Aare Valley, we applied 10Be surface exposure dating on eleven boulders from the Gurten and Bern Stade. Several exposure ages are of Holocene age and likely document post-depositional processes, including boulder toppling and quarrying. The remaining exposure ages, however yield oldest ages of 20.7 ± 2.2 ka for the Gurten Stade and 19.0 ± 2.0 ka for the Bern Stade. Our results are in good agreement with published chronologies from other sites in the Alps.  相似文献   

16.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas.  相似文献   

18.
晚第四纪柴达木盆地盐湖成盐期与冰期对比方案的再认识   总被引:1,自引:1,他引:0  
文章以柴达木盆地察汗斯拉图、昆特依和一里坪盐湖共计6个中更新统—全新统含盐地层剖面为研究对象,通过铀系测年和光释光测年测定其成盐年代,利用X射线衍射分析测定其盐类矿物种类.察汗斯拉图D19剖面芒硝和石盐层的铀系年代为(231.5±19.5)~(239.5±40.4)ka BP,对应于深海氧同位素阶段(MIS)7早期;昆...  相似文献   

19.
Understanding and interpretation of ‘numbers’ produced about the depositional age of an erratic boulder by cosmogenic nuclide surface-exposure dating is important in the construction of glacial chronology. We have sampled three ‘Findlinge’ (glacially transported boulders) located on the right-lateral margin of the Aare glacier at Möschberg, Grosshöchstetten, southeast of Bern, with the aim of shedding light on this topic. The boulders have the same depositional, but different post-depositional histories: simple exposure; exhumation; and human impact. This sampling is specially selected for this study, since the boulders showing exhumation and human impact would not have been sampled in a regular surface-exposure dating application. We measured cosmogenic 10Be concentrations and calculated apparent exposure ages that are 13.6 ± 0.5, 18.1 ± 0.8, and 7.5 ± 0.4 ka, respectively. The exposure age of the first boulder reflects exhumation. The apparent exposure age of 18.1 ± 0.8 ka (erosion-corrected exposure age 19.0 ± 0.9 ka) from the second boulder correlates well with the end of the Alpine and global last glacial maximum. The third boulder shows evidence of quarrying as it is surrounded by a rim of excavation material, which is also reflected by the 7.5 ± 0.4 ka apparent exposure age. We modeled the variation of 10Be concentrations with depth down into the sediment in which the first (exhumed) boulder was once buried in, and down into the third (quarried) boulder. According to our modeling, we determined that the exhumed ‘Findling’ was buried in sediment at a depth of around 0.5 m, and around 2 m of rock was quarried from the third ‘Findling’. Our results reveal the importance of sampling for surface-exposure dating within a well defined field context, as post-depositional impacts can easily hinder exposure-dating of surfaces.  相似文献   

20.
Morphological, seismic and lithostratigraphic investigations of a moraine deposit at Bleik (the Bleik moraine), northern Andøya, show short-distance transported till overlying long-distance transported predominantly glaciofluvial ice-marginal deposits. Consolidated glaciomarine sediments from a core at present sea-level, c . 400 m distally to the moraine complex, contain 31 species of foraminifera, among which Cassidulina reniforme, Islandiella helenae and Trifarina fluens dominate, and fragments of the molluscs Mya truncata and Astarte sp. and the echinoid Strongylocentrotus sp. Amino acid analyses of the foraminifera Cibicides lobatulus and the mollusc Mya truncata indicate ages between 22,000 and 16,000 BP. Radiocarbon dating of fragments of Mya truncata from the upper part of the core gave an age of 17,940 ± 245 BP, while a dating of unidentified shell fragments from the lower part gave an infinite age (>40,000 BP). The sediment was probably disturbed by icebergs beyond the end moraine zone, and the radiocarbon and amino acid dating of Mya truncata therefore represent a maximum age for this process. This new evidence indicates two phases with a higher relative sea-level than at present at Bleik, c . 18,000 and >40,000 BP. The Bleik moraine probably represents the early Late Weichselian glacial maximum ( c . 22,000 BP), while the underlying deglaciation deposit and associated beach-ridge (Bruvollen) is of pre-Late Weichselian age. Moraine ridges 3–4 km to the south of Bleik probably indicate advances of local glaciers between 22,000 and 18,000 BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号