首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Object-based class modelling allows for mapping complex, hierarchical habitat systems. The riparian zone, including forests, represents such a complex ecosystem. Forests within riparian zones are biologically high productive and characterized by a rich biodiversity; thus considered of high community interest with an imperative to be protected and regularly monitored. Satellite earth observation (EO) provides tools for capturing the current state of forest habitats such as forest composition including intermixture of non-native tree species. Here we present a semi-automated object based image analysis (OBIA) approach for the mapping of riparian forests by applying class modelling of habitats based on the European Nature Information System (EUNIS) habitat classifications and the European Habitats Directive (HabDir) Annex 1. A very high resolution (VHR) WorldView-2 satellite image provided the required spatial and spectral details for a multi-scale image segmentation and rule-base composition to generate a six-level hierarchical representation of riparian forest habitats. Thereby habitats were hierarchically represented within an image object hierarchy as forest stands, stands of homogenous tree species and single trees represented by sunlit tree crowns. 522 EUNIS level 3 (EUNIS-3) habitat patches with a mean patch size (MPS) of 12,349.64 m2 were modelled from 938 forest stand patches (MPS = 6868.20 m2) and 43,742 tree stand patches (MPS = 140.79 m2). The delineation quality of the modelled EUNIS-3 habitats (focal level) was quantitatively assessed to an expert-based visual interpretation showing a mean deviation of 11.71%.  相似文献   

2.
ABSTRACT

Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey’s height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600?km2 airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45?m.  相似文献   

3.
ABSTRACT

In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a ‘bridge’. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R2?=?0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.  相似文献   

4.
机载激光雷达及高光谱的森林乔木物种多样性遥感监测   总被引:1,自引:0,他引:1  
利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。  相似文献   

5.
Indigenous forest biome in South Africa is highly fragmented into patches of various sizes (most patches < 1 km2). The utilization of timber and non-timber resources by poor rural communities living around protected forest patches produce subtle changes in the forest canopy which can be hardly detected on a timely manner using traditional field surveys. The aims of this study were to assess: (i) the utility of very high resolution (VHR) remote sensing imagery (WorldView-2, 0.5–2 m spatial resolution) for mapping tree species and canopy gaps in one of the protected subtropical coastal forests in South Africa (the Dukuduku forest patch (ca.3200 ha) located in the province of KwaZulu-Natal) and (ii) the implications of the map products to forest conservation. Three dominant canopy tree species namely, Albizia adianthifolia, Strychnos spp. and Acacia spp., and canopy gap types including bushes (grass/shrubby), bare soil and burnt patches were accurately mapped (overall accuracy = 89.3 ± 2.1%) using WorldView-2 image and support vector machine classifier. The maps revealed subtle forest disturbances such as bush encroachment and edge effects resulting from forest fragmentation by roads and a power-line. In two stakeholders’ workshops organised to assess the implications of the map products to conservation, participants generally agreed amongst others implications that the VHR maps provide valuable information that could be used for implementing and monitoring the effects of rehabilitation measures. The use of VHR imagery is recommended for timely inventorying and monitoring of the small and fragile patches of subtropical forests in Southern Africa.  相似文献   

6.
Forest conservation in human-dominated tropical landscapes ensures provision of major ecosystem services. However, conservation goals are threatened by growing demands for agricultural products. As the expansion of agricultural frontiers continues to exert increasing pressure on forest cover, it is crucial to provide indicators on forest vulnerability to improve our understanding of forest dynamics and prioritize management actions by local decision-makers. The purpose of this study is to develop a rigorous methodological framework to assess forest ecological vulnerability. We aim at evaluating the potential of remote sensing to characterize forest landscape dynamics in spatial and temporal dimensions. We present an innovative method that spatially integrates current landscape mosaic mapping with 45 years of landscape trajectories using Sentinel-2 and Landsat imagery. We derive indicators of exposure to cropland expansion, sensitivity linked with forest degradation and fragmentation, and forest capacity to respond based on forest landscape composition in Di Linh district in the Central Highlands of Vietnam. We map current forest-agricultural mosaics with high accuracy to assess landscape intensification (kappa index = 0.78). We also map the expansion of the agricultural frontier and highlighted heterogeneous agricultural encroachment on forested areas (kappa index = 0.72-0.93). Finally, we identify degradation and fragmentation trajectories that affect forest cover at different rates and intensity. Combined, these indicators pinpoint hotspots of forest vulnerability. This study provides tailored management responses and levers for action by local decision makers. The accessibility of multi-dimensional remote sensing data and the developed landscape approach open promising perspectives for continuously monitoring agricultural frontiers.  相似文献   

7.
Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools.  相似文献   

8.
针对以光谱特征差异为依据,提取森林湿地信息精度低的问题,该文采用兼容多源数据的分类回归树(CART)提取方法,并以大沾河国家森林湿地进行实证研究。基于Landsat8遥感数据、Radarsat-2极化雷达数据和地形辅助数据,采用SPM软件分别构建3种特征变量组合的CART决策树模型,并获取分类规则,最后根据规则对研究区的森林湿地信息进行提取。结果表明:3种特征变量组合中,兼容光谱、纹理、雷达与地形辅助数据的CART决策树的森林湿地信息提取精度最高,用户精度和制图精度分别达到了88.46%和82.14%。研究结果体现了雷达数据与地形辅助数据有助于提取森林湿地信息。  相似文献   

9.
Forest structural diversity metrics describing diversity in tree size and crown shape within forest stands can be used as indicators of biodiversity. These diversity metrics can be generated using airborne laser scanning (LiDAR) data to provide a rapid and cost effective alternative to ground-based inspection. Measures of tree height derived from LiDAR can be significantly affected by the canopy conditions at the time of data collection, in particular whether the canopy is under leaf-on or leaf-off conditions, but there have been no studies of the effects on structural diversity metrics. The aim of this research is to assess whether leaf-on/leaf-off changes in canopy conditions during LiDAR data collection affect the accuracy of calculated forest structural diversity metrics. We undertook a quantitative analysis of LiDAR ground detection and return height, and return height diversity from two airborne laser scanning surveys collected under leaf-on and leaf-off conditions to assess initial dataset differences. LiDAR data were then regressed against field-derived tree size diversity measurements using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.66, 0.38 and 0.16, respectively, and leaf-off models 0.67, 0.37 and 0.23, respectively). When LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity the models described 75% and 69% of the variance (R² of 0.75 for tree height diversity and 0.69 for DBH diversity). The results suggest that tree height diversity models derived from airborne LiDAR, collected (and where appropriate combined) under any seasonal conditions, can be used to differentiate between simple single and diverse multiple storey forest structure with confidence.  相似文献   

10.
枯立木识别对森林资源管理,生物多样性保护,以及森林碳储量变化评估具有重要价值.无人机高分辨率影像为枯立木调查提供了较为便捷的方式.现有枯立木识别算法多依靠拥有红边、近红外波段的多光谱影像来实现.相比于多光谱相机,消费级无人机通常搭载的是用于获取可见光(RGB)影像的普通数码相机,较少的波段信息为基于RGB影像的枯立木自...  相似文献   

11.
Abstract

The study investigates the potential of UAV-based remote sensing technique for monitoring of Norway spruce health condition in the affected forest areas. The objectives are: (1) to test the applicability of UAV visible an near-infrared (VNIR) and geometrical data based on Z values of point dense cloud (PDC) raster to separate forest species and dead trees in the study area; (2) to explore the relationship between UAV VNIR data and individual spruce health indicators from field sampling; and (3) to explore the possibility of the qualitative classification of spruce health indicators. Analysis based on NDVI and PDC raster was successfully applied for separation of spruce and silver fir, and for identification of dead tree category. Separation between common beech and fir was distinguished by the object-oriented image analysis. NDVI was able to identify the presence of key indicators of spruce health, such as mechanical damage on stems and stem resin exudation linked to honey fungus infestation, while stem damage by peeling was identified at the significance margin. The results contributed to improving separation of coniferous (spruce and fir) tree species based on VNIR and PDC raster UAV data, and newly demonstrated the potential of NDVI for qualitative classification of spruce trees. The proposed methodology can be applicable for monitoring of spruce health condition in the local forest sites.  相似文献   

12.
In this study, we tested the utility of remotely sensed data in predicting tree species diversity in savanna woodlands. Specifically, we developed linear regression functions based on a combination of the coefficient of variation of near infrared (NIR) radiance and the soil-adjusted vegetation index (SAVI), both derived from advanced space-borne thermal emission and reflection radiometer satellite imagery. Using the regression functions in a Geographic Information System (GIS), we predicted the spatial variations in tree species diversity. Our results showed that tree species diversity can be predicted using a combination of the coefficient of variation of NIR radiance and SAVI. We conclude that remotely sensed data can be used to spatially predict tree species diversity in savanna woodlands.  相似文献   

13.
ABSTRACT

Tree species distribution mapping using remotely sensed data has long been an important research area. However, previous studies have rarely established a comprehensive and efficient classification procedure to obtain an accurate result. This study proposes a hierarchical classification procedure with optimized node variables and thresholds to classify tree species based on high spatial resolution satellite imagery. A classification tree structure consisting of parent and leaf nodes was designed based on user experience and visual interpretation. Spectral, textural, and topographic variables were extracted based on pre-segmented images. The random forest algorithm was used to select variables by ranking the impact of all variables. An iterating approach was used to optimize variables and thresholds in each loop by comprehensively considering the test accuracy and selected variables. The threshold range for each selected variable was determined by a statistical method considering the mean and standard deviation for two subnode types at each parent node. Classification of tree species was implemented using the optimized variables and thresholds. The results show that (1) the proposed procedure can accurately map the tree species distribution, with an overall accuracy of over 86% for both training and test stages; (2) critical variables for each class can be identified using this proposed procedure, and optimal variables of most tree plantation nodes are spectra related; (3) the overall forest classification accuracy using the proposed method is more accurate than that using the random forest (RF) and classification and regression tree (CART). The proposed approach provides results with 3.21% and 7.56% higher overall land cover classification accuracy and 4.68% and 10.28% higher overall forest classification accuracy than RF and CART, respectively.  相似文献   

14.
The spatial and temporal distribution of trees has a large impact on human health and the environment through contributions to important climate mechanisms as well as commercial, recreational and social activities in society. A range of tree mapping methodologies has been presented in the literature, but tree cover estimates still differ widely between the individual datasets, and comparisons of the thematic accuracy of the resulting tree maps are rather scarce. The Copernicus Sentinel-2 satellites, which were launched in 2015 and 2017, have a combination of high spatial and temporal resolution. Given that this is a new satellite, a substantial amount of research on development of tree mapping algorithms as well as accuracy assessment of said algorithms have to be done in the years to come. To contribute to this process, a tree map produced through unsupervised classification was created for six Sentinel-2 tiles. The agreement between the tree map and the corresponding national forest inventory, as a function of the band combination chosen, was analysed and the thematic accuracy was assessed for two out of the six tiles. The results show that the highest agreement between the present tree map and the national forest inventory was found for bands 2, 3, 6 and 12. The present tree map has a relative difference in tree cover between 8% and 79% compared to previous estimates, but results are characterised by large scatter. Lastly, it is shown that the overall thematic accuracy of the present map is up to 90%, with the user’s accuracy ranging from 34.85% to 92.10%, and the producer’s accuracy ranging from 23.80% to 97.60% for the various thematic classes. This demonstrates that tree maps with high thematic accuracy can be produced from Sentinel-2. In the future the thematic accuracy can be increased even more through the use of temporal averaging in the mapping procedure, which will enable an accurate estimate of the European tree cover.  相似文献   

15.
Tree species composition of forest stand is an important indicator of forest inventory attributes for assessing ecosystem health, understanding successional processes, and digitally displaying forest biodiversity. In this study, we acquired high spatial resolution multispectral and RGB imagery over a subtropical natural forest in southwest China using a fixed-wing UAV system. Digital aerial photogrammetric (DAP) technique was used to generate multi-spectral and RGB derived point clouds, upon which individual tree crown (ITC) delineation algorithms and a machine learning classifier were used to identify dominant tree species. To do so, the structure-from-motion method was used to generate RGB imagery-based DAP point clouds. Then, three ITC delineation algorithms (i.e., point cloud segmentation (PCS), image-based multiresolution segmentation (IMRS), and advanced multiresolution segmentation (AMRS)) were used and assessed for ITC detection. Finally, tree-level metrics (i.e., multispectral, texture and point cloud metrics) were used as metrics in the random forest classifier used to classify eight dominant tree species. Results indicated that the accuracy of the AMRS ITC segmentation was highest (F1-score = 82.5 %), followed by the segmentation using PCS (F1-score = 79.6 %), the IMRS exhibited the lowest accuracy (F1-score = 78.6 %); forest types classification (coniferous and deciduous) had a higher accuracy than the classification of all eight tree species, and the combination of spectral, texture and structural metrics had the highest classification accuracy (overall accuracy = 80.20 %). In the classification of both eight tree species and two forest types, the classification accuracies were lowest when only using spectral metrics, indicated that the texture metrics and point cloud structural metrics had a positive impact on the classification (the overall accuracy and kappa accuracy increased by 1.49–4.46 % and 2.86–6.84 %, respectively).  相似文献   

16.
Many of the data needs for efficient management of forest resources can be met by aerial photographs. Commercially important tree species can be distinguished from other less important miscellaneous species with the help of aerial photographs. Forests can be classified according to their height and density classes. Aerial photographs have become indispensable for mapping of forests and preparation of forest inventories. A comparison of interpretation results obtained from landsat imagery and aerial photographs (1 ∶ 10,000 Black and White panchromatic photography) with respect to forestry interpretation is given. It is pointed out that the imagery obtained from satellities can be used for reconnaissance of a region and for deciding the priorities for carrying out more detailed surveys of forest resources with the help of air photointerpretation techniques  相似文献   

17.
森林生态系统为人类提供了生态系统服务,生物多样性是制约森林生态系统服务发挥的关键因素之一。本文以安吉县生物多样性保护优先区为试点区域,分析了现有国内外生态系统服务价值的内涵及核算体系,针对核算的关键难点和问题,以核算体系合理、模型可操作、数据可获取及参数设置科学为原则,构建适用于安吉县的森林生态系统服务价值核算理论技术方法,实现对安吉县生物多样性优先保护区域的生态系统服务价值的空间量化核算。结果显示,2018年安吉县生物多样性优先保护区域森林生态系统服务总价值为65.37亿元,每公顷森林生态系统服务价值在80 000元以上。  相似文献   

18.
Climate drives ecosystem processes and impacts biodiversity. Biodiversity patterns over large areas, such as Canada's boreal, can be monitored using indirect indicators derived from remotely sensed imagery. In this paper, we characterized the historical space–time relationships between climate and a suite of indirect indicators of biodiversity, known as the Dynamic Habitat Index (DHI) to identify where climate variability is co-occurring with changes in biodiversity indicators. We represented biodiversity using three indirect indicators generated from 1987 to 2007 National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer images. By quantifying and clustering temporal variability in climate data, we defined eight homogeneous climate variability zones, where we then analyzed the DHI. Results identified unique areas of change in climate, such as the Hudson Plains, that explain significant variations in DHI. Past variability in temperatures and growing season index had a strong influence on observed vegetation productivity and seasonality changes throughout Canada's boreal. Variation in precipitation, for most of the area, was not associated with DHI changes. The methodology presented here enables assessment of spatial–temporal relationships between biodiversity and climate variability and characterizes distinctive zones of variation that may be used for prioritization and planning to ensure long-term biodiversity conservation in Canada.  相似文献   

19.
Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m?2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata.  相似文献   

20.
Tropical forest fragmentation has been a major concern towards biodiversity conservation. Indices to determine the community structure and their relationship with forest fragmentation have been a matter of investigation. Here, I investigated the plant diversity across a fragmentation gradient in a typical human-influenced forested landscape in eastern Himalaya. The stratification for guiding field sampling was done using satellite remote sensing derived forest type map at 1:50,000 scale. The results of 49 sample plots (nested quadrant of 20×20 m size) following stratified random sampling method were analysed. It was observed that high fragmented forests have fewer plant species, reduced anthropogenic use evidence and newer community types than medium and low fragment forests. In general, species diversity and species dominance were observed to be inversely proportional and directly proportional to forest fragmentation. Basal area followed a decreasing trend along fragmentation gradient. These results revealed that higher level of fragmentation permits low diversity in the eastern Himalayan tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号