首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙艳丽  张霞  帅通  尚坤  冯淑娜 《遥感学报》2015,19(4):618-626
辐射归一化旨在减小不同时相遥感影像间因获取条件不一致而导致的非地表辐射变化的差异,是土地覆盖变化监测的重要前提条件。本文根据高光谱图像上同类地物的谱形及数值的相似性,利用光谱角距离(SAD)和欧氏距离(ED)双重判定选取不变特征点,提出了一种基于光谱角—欧氏距离的辐射归一化方法。在评价指标中除了常用的均方根误差和相对偏差,更增加了高光谱特色的衡量光谱保真性指标:皮尔森系数、光谱扭曲程度。利用高光谱遥感CHRIS图像对本文提出方法进行验证,并与基于多元变化检测(MAD)的辐射归一化方法比较。结果表明,本文方法不仅在辐射特性上优于基于多元变化检测(MAD)的方法,而且具有保持光谱特性的优势,具有较好的应用前景。  相似文献   

2.
Linear spectral mixture analysis (LSMA) is widely employed in impervious surface estimation, especially for estimating impervious surface abundance in medium spatial resolution images. However, it suffers from a difficulty in endmember selection due to within-class spectral variability and the variation in the number and the type of endmember classes contained from pixel to pixel, which may lead to over or under estimation of impervious surface. Stratification is considered as a promising process to address the problem. This paper presents a stratified spectral mixture analysis in spectral domain (Sp_SSMA) for impervious surface mapping. It categorizes the entire data into three groups based on the Combinational Build-up Index (CBI), the intensity component in the color space and the Normalized Difference Vegetation Index (NDVI) values. A suitable endmember model is developed for each group to accommodate the spectral variation from group to group. The unmixing into the associated subset (or full set) of endmembers in each group can make the unmixing adaptive to the types of endmember classes that each pixel actually contains. Results indicate that the Sp_SSMA method achieves a better performance than full-set-endmember SMA and prior-knowledge-based spectral mixture analysis (PKSMA) in terms of R, RMSE and SE.  相似文献   

3.
A method is presented for the development of a regional Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper plus (ETM+) spectral greenness index, coherent with a six-dimensional index set, based on a single ETM+ spectral image of a reference landscape. The first three indices of the set are determined by a polar transformation of the first three principal components of the reference image and relate to scene brightness, percent foliage projective cover (FPC) and water related features. The remaining three principal components, of diminishing significance with respect to the reference image, complete the set.The reference landscape, a 2200 km2 area containing a mix of cattle pasture, native woodland and forest, is located near Injune in South East Queensland, Australia. The indices developed from the reference image were tested using TM spectral images from 19 regionally dispersed areas in Queensland, representative of dissimilar landscapes containing woody vegetation ranging from tall closed forest to low open woodland. Examples of image transformations and two-dimensional feature space plots are used to demonstrate image interpretations related to the first three indices. Coherent, sensible, interpretations of landscape features in images composed of the first three indices can be made in terms of brightness (red), foliage cover (green) and water (blue). A limited comparison is made with similar existing indices. The proposed greenness index was found to be very strongly related to FPC and insensitive to smoke. A novel Bayesian, bounded space, modelling method, was used to validate the greenness index as a good predictor of FPC. Airborne LiDAR (Light Detection and Ranging) estimates of FPC along transects of the 19 sites provided the training and validation data. Other spectral indices from the set were found to be useful as model covariates that could improve FPC predictions. They act to adjust the greenness/FPC relationship to suit different spectral backgrounds. The inclusion of an external meteorological covariate showed that further improvements to regional-scale predictions of FPC could be gained over those based on spectral indices alone.  相似文献   

4.
针对卫星遥感技术监测地表温度(land surface temperature,LST)存在时空分辨率矛盾这一难题,以TsHARP温度降尺度算法为基础,根据地表覆盖类型的不同,分别选择与LST相关性更好的光谱指数(归一化植被指数,NDVI;归一化建造指数,NDBI;改进的归一化水体指数,MNDWI;增强型裸土指数,EBSI)提出了新的转换模型,并从定性和定量两个角度评价了TsHARP法和新模型的降尺度精度。结果表明:两种模型在提高LST空间分辨率的同时又能较好地保持MODIS LST影像热特征的空间分布格局,消除了原始1km影像中的马赛克效应,两种模型均能够达到较好的降尺度效果;全局尺度分析表明,不管是在降尺度结果的空间变异性还是精度方面,本文提出的模型(RMSE:1.635℃)均要优于TsHARP法(RMSE:2.736℃);TsHARP法在水体、裸地和建筑用地这些低植被覆盖区表现出较差的降尺度结果,尤其对于裸地和建筑用地更为明显(|MBE|3℃),新模型提高了低植被覆盖区地物的降尺度精度;不同季节的降尺度结果表明,两种模型都是夏、秋季的降尺度结果优于春、冬季,新模型的降尺度结果四季均好于TsHARP法,其中春、冬季的降尺度精度提升效果要优于夏、秋季。  相似文献   

5.
Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).  相似文献   

6.
Pixel-based image compositing enables production of large-area surface reflectance images that are largely devoid of clouds, cloud shadows, or haze. Change detection with spectral trend analysis uses a dense time series of images, such as pixel-based composites, to quantify the year, amount, and magnitude of landscape changes. Topographically-related shadows found in mountainous terrain may confound trend-based forest change detection approaches. In this study, we evaluate the impact of topographic correction on trend-based forest change detection outcomes by comparing the amount and location of changes identified on an image composite with and without a topographic correction. Moreover, we evaluated two different approaches to topographic correction that are relevant to pixel-based image composites: the first corrects each pixel according to the day of year (DOY) the pixel was acquired, whilst the second corrects all pixels to a single reference date (August 1st), which was also the target date for generating the pixel-based image composite. Our results indicate that a greater area of change is detected when no topographic correction is applied to the image composite, however, the difference in change area detected between no correction and either the DOY or the August 1st correction is minor and less than 1% (0.54–0.85%). The spatial correspondence of these different approaches is 96.2% for the DOY correction and 97.7% for the August 1st correction. The largest differences between the correction processes occur in valleys (0.71–1.14%), upper slopes (0.71–1.09%), and ridges (0.73–1.09%). While additional tests under different conditions and in other environments are encouraged, our results indicate that topographic correction may not be justified in change detection routines computing spectral trends from pixel-based composites.  相似文献   

7.
In this paper, we evaluate the extent to which the resampled field spectra compare with the actual image spectra of the new generation multispectral WorldView-2 (WV-2) satellite. This was achieved by developing models from resampled field spectra data and testing them on an actual WV-2 image of the study area. We evaluated the performance of reflectance ratios (RI), normalized difference indices (NDI) and random forest (RF) regression model in predicting foliar nitrogen concentration in a grassland environment. The field measured spectra were used to calibrate the RF model using a randomly selected training (n = 70%) nitrogen data set. The model developed from the field spectra resampled to WV-2 wavebands was validated on an independent field spectral test dataset as well as on the actual WV-2 image of the same area (n = 30%, bootstrapped a 100 times). The results show that the model developed using RI could predict nitrogen with a mean R2 of 0.74 and 0.65 on an independent field spectral test data set and on the actual WV-2 image, respectively. The root mean square error of prediction (RMSE %) was 0.17 and 0.22 for the field test data set and the WV-2 image, respectively. Results provide an insight on the magnitude of errors that are expected when up-scaling field spectral models to airborne or satellite image data. The prediction also indicates the unceasing relevance of field spectroscopy studies to better understand the spectral models critical for vegetation quality assessment.  相似文献   

8.
时间序列遥感影像常用于地表覆盖监测及其变化监测。然而,利用时序遥感数据—尤其是中分辨率遥感数据监测地表覆盖变化,其方法基本是先对多期影像分别进行监督分类然后对比分类结果。由于这种方法需要对每期遥感影像单独选择分类训练样本,而对于历史影像,常常难以获得可靠的样本数据。本文基于遥感数据定量化处理,尝试利用光谱特征扩展方法对时间序列Landsat数据进行分类:首先,结合一种新的大气校正方法和相对辐射归一化方法,对时间序列Landsat数据进行定量化处理,以消除各期影像之间的辐射差异,获得地表反射率数据。然后,论文选择一期易于获得分类训练样本的反射率数据作为"参考影像",并结合样本数据提取不同地表覆盖类型的光谱特征。最后,将"参考影像"中提取的地物光谱特征,扩展到所有时间序列反射率数据进行分类。论文利用青藏高原玛多地区的5景Landsat数据对本文的方法进行了验证,结果显示:基于光谱特征扩展的分类方法,可有效对定量化处理后的Landsat数据进行分类,分类总体精度为88.35%—94.25%,分类结果和传统的单景监督分类结果具有较好的一致性。此外,研究也发现,"参考影像"和待分类图像获取时间的季相差异会影响其分类的精度。  相似文献   

9.
This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application. Supported by the National Natural Science Foundation of China (No.70361001).  相似文献   

10.
Sentinel-2A与Landsat 8O LI逐像元辐射归一化方法研究   总被引:1,自引:0,他引:1  
考虑不同传感器光谱响应函数差异及不同地物类型反射率光谱的差异,提出了一种逐像元辐射归一化方法,并以2017年7月17日内蒙古达里诺尔湖地区准同步过境的Sentinel-2A及Landsat 8数据为例,对两类数据可见-近红外波段(VNIR)地表反射率结果进行归一化。首先采用Sen2cor方法及NASA官方提供大气校正算法,分别对Sentinel-2A及Landsat 8 OLI影像进行大气校正并重采样到同一空间分辨率;然后基于光谱库计算匹配因子并构建图像与光谱库之间的匹配转换模型,实现像元尺度上从Sentinel-2影像到Landsat 8影像地表反射率相似波段之间的转换。结果表明,经逐像元归一化的影像相比原始影像及经HLS光谱归一化的影像,与Landsat 8 VNIR波段的相关性明显提高,辐射一致性增强。该转换模型为多源中高分辨率遥感图像高精度辐射归一化提供了新思路。  相似文献   

11.
Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE  0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.  相似文献   

12.
Image fusion is the combination of two or more different images to form a new image by using a certain algorithm. Despite the fact that the number and kind of satellite imagery are daily increasing, using fusion techniques, in a proper way, to eliminate the redundancy in data and increase the quality of data is an important challenge in Remote Sensing Image Processing. Fusion of multispectral images with a hyperspectral image generates a composite image which preserves the spatial quality from the high resolution (MS) data and the spectral characteristics from the hyperspectral data. For the present study three fusion algorithms (Principal Component Transformation, Colour Normalized and Gram-Scmidt Transformation) were analysed for Hyperion and IKONOS MSS data. Their ability to preserve the spectral quality of fused data, in comparison with original hyper-spectral image, has been investigated.  相似文献   

13.
Many sensors have their bands overlapped and therefore do not set a normal space. If a spectral distance is measured, as in first-order statistical classifiers, the direct consequence is that the result will not be the most accurate. Image classification processes are independent of the spectral response function of the sensor, so this overlap is usually ignored during image processing. This paper presents a methodology that introduces the spectral response function of sensors into the classification process to increase its accuracy. This process takes place in two steps: first, incident energy values of the sensors are reconstructed; second, the energy of the bands is set in an orthonormal space using a matrix singular value decomposition. Sensors with and without overlapping spectral bands were simulated to evaluate the reconstruction of energy values. The whole process was implemented on three types of images with medium, high and very high spatial resolution obtained with the sensors ASTER, IKONOS and DMC camera, respectively. These images were classified by ISODATA and minimum distance algorithms. The ISODATA classifier showed well-defined features in the processed images, while the results were less clear in the original images. At the same time, the minimum distance classifier showed that overall accuracy of the processed images increased as the maximum tolerance distance decreased compared to the original images.  相似文献   

14.
Vegetation type is an environmental attribute that varies across the landscape and over time. Its continuous assessment is important for monitoring land use changes and forest degradation. There are advanced methods that can estimate the fractional cover of vegetation types within each pixel. This paper compares some methods for subpixel mapping of forest cover in the state of San Luis Potosí, Mexico, using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived spectral data (MCD43A4). Three methods were tested: (1) Bayesian posterior probability, (2) the Fuzzy k nearest neighbor (FkNN), and (3) linear spectral mixture analysis (LSMA). While the Bayesian approach gave the poorest correlations, FkNN (r = 0.78) and LSMA (r = 0.81) estimations were successfully validated with information obtained from a Landsat image. This paper represents an interesting attempt to compare rarely reported FkNN with traditional approaches such as LSMA and the Bayesian one.  相似文献   

15.
Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.  相似文献   

16.
吴剑  程朋根  何挺  王静 《测绘科学》2008,33(1):137-140
混合像元问题是定量遥感中的热点问题之一,为了改进从遥感数据中提取定量信息,人们建立了各种混合光谱分解技术,其中线性光谱混合模型和神经网络模型就是两种比较成熟的方法。以陕西省横山地区的高光谱Hyperion数据为研究基础,通过最小噪声变换(MNF)、像元纯度指数(PPI)转换和RMS误差分析的迭代方法相结合提取影像中的纯净像元作为终端端元。分别运用神经网络模型和线性光谱混合模型对影像进行光谱分解,得到各个组分的分解图像。以标准植被指数(NDVI)影像为衡量标准,选取训练样本点,分别对两种模型进行回归分析,结果显示NDVI影像与线性光谱混合模型植被分解图像的判定系数(R2=0.91)要大于其与神经网络模型的判定系数(R2=0.81)。进一步分析表明在一般情况下,线性光谱混合模型具有比神经网络模型略高的分离精度,但是神经网络模型对细部信息的提取的效果要好于线性光谱混合模型,最后提出了端元均方根误差(EAR)指数,一种新的混合像元分解的思路。  相似文献   

17.
保持光谱信息的遥感图像融合方法研究   总被引:9,自引:1,他引:8  
吴连喜  梁波  刘晓梅  Yun Zhang 《测绘学报》2005,34(2):118-122,128
常用的遥感图像融合方法,如IHS变换法、Brovey变换法和主成分变换法等在实施图像融合时,均会有不同程度的光谱扭曲现象.探讨能有效保持光谱信息的EECN融合法.EECN融合法采用比值变换法,同时对参与融合的全色波段进行增强边缘,融合后的图像在光谱保持性能、分类精度等方面均较优.  相似文献   

18.
基于中国农业科学院在呼伦贝尔草原实测的120组草地冠层光谱反射率及相应的叶面积指数(LAI)数据,在进行主成分分析(PCA)实现降维处理的基础上,利用径向基函数(radial basis function,RBF)神经网络方法对草地LAI进行了高光谱反演研究.PCA结果表明,前9个主成分的累积贡献率达到了99.782%,能包含原光谱数据的绝大部分信息.将120组LAI及相应的9个主成分样本数据随机分为校正集数据(90组)和预测集数据(30组),分别用于神经网络模型的建立和LAI的预测.所构建的神经网络模型的模拟结果表明,RBF神经网络模型对校正集样本的模拟准确率达到100%(RMSE =0.009 6,R2 =0.999);预测集样本的实测LAI和模拟LAI之间的均方误差和决定系数分别为0.218 6和0.839,取得了较好的模拟效果,有效提高了传统的多元线性回归方程(RMSE =0.416 5,R2=0.570)的计算精度.  相似文献   

19.
The remote sensing of Case 2 water has been far less successful than that of Case 1 water, due mainly to the complex interactions among optically active substances (e.g., phytoplankton, suspended sediments, colored dissolved organic matter, and water) in the former. To address this problem, we developed a spectral decomposition algorithm (SDA), based on a spectral linear mixture modeling approach. Through a tank experiment, we found that the SDA-based models were superior to conventional empirical models (e.g. using single band, band ratio, or arithmetic calculation of band) for accurate estimates of water quality parameters. In this paper, we develop a method for applying the SDA to Landsat-5 TM data on Lake Kasumigaura, a eutrophic lake in Japan characterized by high concentrations of suspended sediment, for mapping chlorophyll-a (Chl-a) and non-phytoplankton suspended sediment (NPSS) distributions. The results show that the SDA-based estimation model can be obtained by a tank experiment. Moreover, by combining this estimation model with satellite-SRSs (standard reflectance spectra: i.e., spectral end-members) derived from bio-optical modeling, we can directly apply the model to a satellite image. The same SDA-based estimation model for Chl-a concentration was applied to two Landsat-5 TM images, one acquired in April 1994 and the other in February 2006. The average Chl-a estimation error between the two was 9.9%, a result that indicates the potential robustness of the SDA-based estimation model. The average estimation error of NPSS concentration from the 2006 Landsat-5 TM image was 15.9%. The key point for successfully applying the SDA-based estimation model to satellite data is the method used to obtain a suitable satellite-SRS for each end-member.  相似文献   

20.
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity–hue–saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号