首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Upper Tons River Basin of North India has been selected for prioritisation of sub-watersheds (SW) based on morphometric parameters with respect to groundwater derived from topographic sheets and CARTOSAT data. There are 10 SW have been delineated in the region, high stream frequency (Fs) values of SW (1–5) and SW-9 indicated the occurrence of steep slopes, less permeable rocks, greater runoff, less infiltration possibility. Further, these regions have been predicted as poor groundwater potentialities. SW-2 has been identified as poorest groundwater potential zone, whereas SW-4 and SW (6–8) regions possess good permeable bed rocks. The Drainage density (Dd) map demonstrated that the middle south-west region possesses higher Dd whereas northeastern regions contain lower Dd. Further, the areal parameters indicate elongated shape of the basin, hilly region has moderate to steeper ground slope. The outcomes of work have potential to manage groundwater and to ameliorate the flash flood and droughts.  相似文献   

2.
The study area is a part of Kagna river basin in the Gulburga district of Karnataka, India. It covers an area of 1320 km2 and it has been subdivided into 4 sub-basins namely Wadi, Chitapur, Sedam and Kurkunta, which range in area from 184 to 537 km2. The drainage pattern of these sub-basins are delineated using Geo-coded FCC bands 2,3,4 of IRS 1C and 1D(LISS III+PAN merged) on 1:50,000 scale and Survey of India toposheets as reference. The morphometric parameters are computed using ArcInfo and ArcView GIS softwares. The drainage pattern of the study area is dendritic to sub-dendritic with stream orders ranging from IV to VII orders. Drainage density ranges from 1.40 to 1.86 km/km2 suggesting coarse to moderate drainage texture. The change in values of stream length ratio indicate their late youth stage of geomorphic development. The values of bifurcation ratio ranging from 2.00 to 4.71 indicate that all the sub-basins fall under normal basin category. The values of form factor and circulatory ratio, suggest that the Kurkunta sub-basin is elongated and the remaining sub-basins are more or less circular in shape. Elongation ratio indicates that the Wadi sub-basin is a region of very low relief whereas the other sub-basins are associated with moderate to high relief and steep ground slopes. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

3.
The evaluation of basin characteristics from the morphometric parameters helps in understanding the physical behaviour of the catchments with respect to floods. The advanced technologies, such as Remote sensing and Geographic Information System (GIS), were used for extraction of drainage networks using Cartosat Digital Elevation Model (DEM) for the Upper Krishna basin, to evaluate the morphometric analysis. Basin morphometric parameters were applied to assess the major influencing catchments which cause flooding in the main Krishna River. The morphometric analysis for the ten major potential flood prone river catchments of the basin reveals that, the river catchments such as Krishna, Koyna, Yerla having the greater tendency to peak discharge in a short period of time to the main Krishna River because of high relief ratio (Rh), high ruggedness number and less time of concentration (Tc). The Don catchment having the highest drainage density (Dd), stream frequency, mean bifurcation ratio and infiltration number causes greater runoff influence on the main Krishna River. The Dudhganga and Panchaganga catchments having highest form factor, medium Dd, texture ratio, Rh and time of concentration causes moderate runoff influence towards main Krishna River. The study indicates that systematic analysis of morphometric parameters derived from Cartosat DEM using GIS provide useful information about catchment characteristics with respect to floods management.  相似文献   

4.
The study area covers 570 km2 comprising of 9 sub-watersheds (Dalavayihalli, Maddalenahalli, Talamaradahalli, Puluvalli tank, Nagalamadike, Gowdatimmanahalli, Naliganahalli, Devadabetta and Byadanur) range from 49 to 75 km2 forming part of Pennar river basin around Pavagada. The drainage network of 9 sub-watersheds was delineated using remote sensing data - Geocoded FCC of bands - 2 3 4 of IRS 1 C and 1 D (LISS III+PAN merged) on 1:50,000 scale and SOI topomaps were used as reference. The morphometric analysis of 9 sub-watersheds has been carried out using GIS softwares - Arclnfo and Are View. The drainage network shows that the terrain exhibits dendritic to sub-dendritic drainage pattern. Stream orders ranges from fourth to fifth order. Drainage density varies between 1.55 and 2.16 km/ km2 and has very coarse to coarse drainage texture. The relief ratio range from 0.006 to 0.021. The mean bifurcation ratio varies from 3.21 to 4.88 and falls under normal basin category. The elongation ratio shows that Devedabetta sub-watershed possesses circular shape while remaining sub-watersheds mark elongated pattern. Hence from the study it can be concluded that remote sensing techniques proved to be a competent tool in morphometric analysis.  相似文献   

5.
In the present study, the ground water prospect of Mysore district has been delineated using remotely sensing data, base map of GSI, ground truth data, and geographic information system. Based on these integrated studies, it has been noticed that the lithology of the area mainly represents by amphibolite schists, hornblende-biotite gneiss, chamockite, quartzite and granite belonging to Archean to Lower Proterozoic. Resent alluvial deposits mainly occur as valley fills. Major lineaments are mainly confined to valley regions. Structurally the erosional and depositional landforms are occurring as hills, ridges, weathered pediments, weathered pediplains and valley fills. Geonaorphology, lineaments, drainage density, type of lithology and surface water bodies are directly influencing the ground water conditions and it is very good iu valley regions and in remaining area, it is moderate to poor.  相似文献   

6.
Abstract

River basin assessment is crucial for water management and to address the watershed issues. So, an integrated river basin management and assessment model using morphometric assessment, remote sensing, GIS and SWAT model was envisaged and applied to Kaddam river basin, Telangana state, India. Morphometric results showed high drainage density ranging from 2.19 to 5.5?km2/km, with elongated fan shape having elongation ratio of 0.60–0.75 with sparse vegetation and high relief. Land use change assessment showed that 265.26?km2 of forest land is converted into irrigated land and has increased sediment yields in watersheds. The calibration (r 2?=?0.74, NSE?=?0.84) and validation (r 2?=?0.72, NSE?=?0.84) of SWAT model showed that simulated and observed results were in agreement and in recommended ranges. The SWAT simulations were used to compute mean annual water and sediment yield from 1997 to 2012, along with morphometric results to categorize critical watersheds and conservation structures were proposed accordingly.  相似文献   

7.
三峡水库蓄放水对地面重力变化的影响分析   总被引:1,自引:0,他引:1  
针对目前对地面重力的影响分析多采用模拟计算,从而导致对蓄放水的影响范围和程度分析还存在不足的问题,该文利用资源三号(ZY-3)高分辨率多光谱遥感影像提取了三峡库区江河湖库水体数据,结合水位数据,通过负荷格林函数积分模型,计算出三峡水库蓄放水导致水位升降的过程中水体对地面重力变化的影响。研究发现:(1)以1a为周期,三峡库区库岸及长江近岸地面重力的变化趋势与水库的蓄放水时期对应;(2)三峡水库放水期间水位下降,水库库岸及长江近岸地面重力减小;蓄水期间水位上升,地面重力增大;(3)三峡水库蓄放水对库岸及长江近岸的地面重力影响最大可达1 000μGal以上,且距离长江中心线越近,地面重力变化越大。  相似文献   

8.
The present study attempts to delineate different groundwater potential units using remote sensing and geographic information system (GIS) in Khallikote block of Ganjam disrict, Orissa. Thematic maps of geology, geomorphology, land use and land cover, drainage density, lineament density, slope and DEM (digital elevation model) were prepared using the Landsat Thematic Mapper data in 3 spectral bands, band 7 (mid-infrared light), band 4 (near-infrared light), Band 2 (visible green light). Relationship of each layer to the groundwater regime has been evaluated through detailed analysis of the individual hydrological parameters. The SMCE (Spatial Multi-Criteria Evaluation) module in ILWIS (Integrated Land and Water Information System) supports the decision-making process for evaluating the ground water potential zones in the area. The study shows that more than 70% of the block is covered by medium to excellent category having good ground water potential.  相似文献   

9.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

10.
Remotely sensed data can provide useful information in understanding the distribution of groundwater, an important source of water supply throughout the world. In the present study, the modern geomatic technologies, namely remote sensing and GIS were used in the identification of groundwater potential zones in the Kanyakumari and Nambiyar basins of Tamil Nadu in India. The multivariate statistical technique was used to find out the relationship between rainfall and groundwater resource characteristics. It has been found out that groundwater not only depends upon rainfall, but various other factors also influence its occurrence. Eight such parameters were considered and multi criterion analysis has been carried out in order to find out the potential zones. Accordingly, it had been concluded that the Kanyakumari river basin has more ground water potential, whereas the Nambiyar basin has less potential. Thus surface investigation of groundwater has proved to be easier, time consistent and cheaper using the geomatic technologies.  相似文献   

11.
12.
Numerous studies have been carried out during last 20-25 years by different agencies to trace the courses of palaeo river Sarasvati. Varying number of courses of river Sarasvati have been suggested by the different workers in the north-western region. Taking advantage of the developments in satellite/ sensor and digital image processing technologies an attempt has been made to rediscover the course of river Sarasvati and solve the controversy regarding its exact course, in the sand covered Thar desert region. Data available from a variety of ground investigations carried out by different agencies working in this area have been analyzed in support of confirmation of palaeo channels, along the courses mapped under the present study. The results indicate that the river Sarasvati had its course through river Ghaggar and did not drain along the Aravalli hills. Also it did not shift its course drastically and continuously from east to west, as suggested by earlier workers. The image anomalies indicate that river Sarasvati flowed parallel to the river Indus as an independent river system (closer to the north-western Indian border) and did not flow through present course of river Nara. The findings raise the doubt that ‘Rise along Delhi-Hardwar ridge’ as suggested by earlier workers was the main cause for west-ward shift of Sarasvati river and ultimate drainage desiccation in the northwestern region. The analysis indicates towards rise in Himalayas/ Siwaliks and consequent displacements in the Siwaliks and its foot hills region (in the form of Yamuna and Satlej tear faults) as the main cause for drainage desiccation and disappearance of river Sarasvati.  相似文献   

13.
In the present study efforts have been made to locate favourable zones for ground water targeting using IRS-USS-II data, Hydromorphogeological lineament, lineament density and ground water prospect maps have been prepared through visual interpretation of geocoded images on 1:50,000 scale and Survey of India topographical maps of the same scale. The resulting base line information has been integrated for evaluating ground water potential of mapping units. The alluvial plain, flood plain, infilled valley and deeply buried pediplain ace the prospective zones of ground water exploration and development. Fractures and faults parallel to drainage courses constitute priority zones for ground water targetting.  相似文献   

14.
 基于TM/ETM+和MODIS的漓江流域生态环境遥感动态监测   总被引:3,自引:0,他引:3  
为调查漓江流域近30 a来的生态环境变化,开展了基于TM/ETM+和MODIS遥感长、短周期结合的动态监测研究。通过对3期 Landsat-5/7 TM/ETM+遥感影像的信息提取、模式识别和实际调查,发现造成漓江上游生态环境退化的主要原因与漓江水源林遭人 为破坏、城市化扩展和水质污染等因素有关。通过对MODIS-NDVI和水体反射波谱分析,初步探明了流域区植被总量的季节变化规律 和漓江水体污染的遥感反射波谱特征,确定了水质遥感监测的最佳MODIS波段,得到了研究区的植被覆盖、城市扩展变化及河流水 质变化信息。  相似文献   

15.
利用南流江流域30 m分辨率的DEM数据,介绍了Arc GIS中进行河网提取的一系列过程,并利用其图解建模工具,提取南流江流域的不同汇流累积面积的水系河网,实现了提取过程的流程化处理。分别统计河源密度和沟壑密度,并分别计算它们与汇流累积面积的几何函数关系,并对其进行二阶求导,确定其二阶导数关系,得到合适的汇流累积阈值,并借助分形分维理论对河网的分维值进行了验证。利用函数关系和分形分维确定汇流累积面积提取水系河网的方法有效地避免了人工选择汇流累积面积的主观性,提高了研究结果的准确性和可靠性,在知道研究流域河网分维值的前提下,可快速获取准确的汇流累计面积阈值。  相似文献   

16.
The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics, which explain the variation of river flows among 52 selected basins in Zimbabwe. Flow statistics considered are mean annual runoff, coefficient of variation of annual runoff, average number of days per year without flow and selected percentile flows. Basin characteristics investigated are those likely to reflect climatological, topographical and hydrogeological influences including that of land cover on river flows. The first ordination axis of flow statistics is strongly correlated with mean annual precipitation, mean annual potential evaporation and median slope. This ordination axis explains 64% of the variation of selected flow statistics among the selected drainage basins. The proportions of a basin under cultivation, and that with grasslands are correlated with the second ordination axis, which explains 6% of the variation of selected flow statistics. Mean annual precipitation is the most important basin characteristic, and this alone explains 50% of the variation of flow statistics. Median slope is the second most important basin characteristic. Proportions of a basin underlain by different lithological types had no effect on flow characteristics of selected basins. The paper has demonstrated the ability of redundancy analysis to identify basin characteristics that explain the variation of river flows among basins, including estimating the relative importance of these basin characteristics.  相似文献   

17.
The groundwater occurrence and movement within the flow systems are governed by many natural factors like topography, geology, geomorphology, lineament structures, soil, drainage network and land use land cover (LULC). Due to complex natural geological/hydro-geological regime a systematic planning is needed for groundwater exploitation. It is even more important to characterize the aquifer system and delineate groundwater potential zones in different geological terrain. The study employed integration of weighted index overlay analysis (WIOA) and geographical information system (GIS) techniques to assess the groundwater potential zones in Krishna river basin, India and the validation of the result with existing groundwater levels. Different thematic layers such as geology, geomorphology, soil, slope, LULC, drainage density, lineament density and annual rainfall distribution were integrated with WIOA using spatial analyst tools in Arc-GIS 10.1. These thematic layers were prepared using Geological survey of India maps, European Digital Archive of Soil Maps, Bhuvan (Indian-Geo platform of ISRO, NRSC) and 30 m global land cover data. Drainage, watershed delineation and slope were prepared from the Shuttle Radar Topography Mission digital elevation model of 30 m resolution data. WIOA is being carried out for deriving the normalized score for the suitability classification. Weight factor is assigned for every thematic layer and their individual feature classes considering their significant importance in groundwater occurrence. The final map of the study area is categorized into five classes very good, good, moderate, poor and very poor groundwater potential zones. The result describes the groundwater potential zones at regional scale which are in good agreement with observed ground water condition at field level. Thus, the results derived can be very much useful in planning and management of groundwater resources in a regional scale.  相似文献   

18.
The Mechi-Mahananda interfluve is a transitional area between the hills and the plains and exhibits a wide range of topographical variations. The drainage system of the area has a close relationship with lithology and landforms. The rivers originating in the hills attain a braiding character and have well developed alluvial fans. Piedmont plain covers a large area and has high ground water potential. The river terraces and flood plains also have high potentialities of ground water targeting. Fluctuation of water table is very high in the upper piedmont plain dependent upon the proximity to the drainage lines.  相似文献   

19.
The effects of climate change on hydrological regimes have become a priority area for water and catchment management strategies. The terrestrial hydrology driven by monsoon rainfall plays a crucial role in shaping the agriculture, surface and ground water scenario in India. Thus, it is imperative to assess the impact of the changing climatic scenario projected under various climate change scenario towards the hydrological aspects for India. Runoff is one of the key parameters used as an indicator of hydrological process. A study was taken up to analyse the climate change impact on the runoff of river basins of India. The global circulation model output of Hadley centre (HADCM3) projected climate change data was used. Scenario for 2080 (A2 scenario indicating more industrial growth) was selected. The runoff was modeled using the curve number method in spatial domain using satellite derived current landuse/cover map. The derived runoff was compared with the runoff using normal climatic data (1951–1980). The results showed that there is a decline in the future climatic runoff in most of the river basins of India compared to normal climatic runoff. However, significant reduction was observed for the river basins in the eastern region viz: lower part of Ganga, Bahamani-Baitrani, Subarnrekha and upper parts of the Mahanadi. The mean projected runoff reduction during monsoon season (June–September) were 18 Billion Cubic Meter (BCM), 3.2 BCM, 3.5 BCM and 5.9 BCM for Brahmaputra-Barak Subarnrekha, Subarnarekha and Brahmini-Baitrani basin, respectively in comparison to normal climatic runoff. Overall reduction in seasonal runoff was high for Subarnrekha basin (54.1%). Rainfall to runoff conversion was high for Brahmaputra-Barak basin (72%), whereas coefficient of variation for runoff was more for Mahanadi basin (1.88) considering the monsoon season. Study indicates that eastern India agriculture may be affected due to shortage of surface water availability.  相似文献   

20.
Integration of satellite remote sensing data and GIS techniques is an applicable approach for landslide mapping and assessment in highly vegetated regions with a tropical climate. In recent years, there have been many severe flooding and landslide events with significant damage to livestock, agricultural crop, homes, and businesses in the Kelantan river basin, Peninsular Malaysia. In this investigation, Landsat-8 and phased array type L-band synthetic aperture radar-2 (PALSAR-2) datasets and analytical hierarchy process (AHP) approach were used to map landslide in Kelantan river basin, Peninsular Malaysia. Landslides were determined by tracking changes in vegetation pixel data using Landsat-8 images that acquired before and after flooding. The PALSAR-2 data were used for comprehensive analysis of major geological structures and detailed characterizations of lineaments in the state of Kelantan. AHP approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index, land cover, distance to drainage, precipitation, distance to fault, and distance to the road were extracted from remotely sensed data and fieldwork to apply AHP approach. The excessive rainfall during the flood episode is a paramount factor for numerous landslide occurrences at various magnitudes, therefore, rainfall analysis was carried out based on daily precipitation before and during flood episode in the Kelantan state. The main triggering factors for landslides are mainly due to the extreme precipitation rate during the flooding period, apart from the favorable environmental factors such as removal of vegetation within slope areas, and also landscape development near slopes. Two main outputs of this study were landslide inventory occurrences map during 2014 flooding episode and landslide susceptibility map for entire Kelantan state. Modeled/predicted landslides with a susceptible map generated prior and post-flood episode, confirmed that intense rainfall throughout Kelantan has contributed to produce numerous landslides with various sizes. It is concluded that precipitation is the most influential factor for landslide event. According to the landslide susceptibility map, 65% of the river basin of Kelantan is found to be under the category of low landslide susceptibility zone, while 35% class in a high-altitude segment of the south and south-western part of the Kelantan state located within high susceptibility zone. Further actions and caution need to be remarked by the local related authority of the Kelantan state in very high susceptibility zone to avoid further wealth and people loss in the future. Geo-hazard mitigation programs must be conducted in the landslide recurrence regions for reducing natural catastrophes leading to loss of financial investments and death in the Kelantan river basin. This investigation indicates that integration of Landsat-8 and PALSAR-2 remotely sensed data and GIS techniques is an applicable tool for Landslide mapping and assessment in tropical environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号