首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用NOAA NDVI数据集监测冬小麦生育期的研究   总被引:34,自引:2,他引:34  
探索了利用NDVI研究作物生育期的方法,对黄淮海冬麦区的返青期、抽穗期、成熟期进行了估测,并利用地面实际观测资料进行了验证。结果表明,NDVI数据对大范围农作物生育期监测是可行的。冬小麦遥感反青期由南到北依次推迟,符合春季绿波由南到北推移规律。对冬小麦遥感生育期年际变化分析表明,黄淮海平原返青期变化相对较大,而抽穗期和成熟期变化较小。根据历年月平均温度与返青期分析,冬小麦返青日期与2月份平均温度密切相关。对于局部地区,利用5d合成1km分辨率数据,且按农业生态分区分别制定生育期判别标准,估测效果将更好。  相似文献   

2.
统计数据总量约束下全局优化阈值的冬小麦分布制图   总被引:6,自引:0,他引:6  
大范围、长时间和高精度农作物空间分布基础农业科学数据的准确获取对资源、环境、生态、气候变化和国家粮食安全等问题研究具有重要现实意义和科学意义。本文针对传统阈值法农作物识别过程中阈值设置存在灵巧性差和自动化程度低等弱点,以中国粮食主产区黄淮海平原内河北省衡水市景县为典型实验区,首次将全局优化算法应用于阈值模型中阈值优化选取,开展了利用全局优化算法改进基于阈值检测的农作物分布制图方法创新研究。以冬小麦为研究对象,国产高分一号(GF-1)为主要遥感数据源,在作物面积统计数据为总量控制参考标准和全局参数优化的复合型混合演化算法SCE-UA (Shuffled Complex Evolution-University of Arizona)支持下,提出利用时序NDVI数据开展阈值模型阈值参数自动优化的冬小麦空间分布制图方法。最终,获得实验区冬小麦阈值模型最优参数,并利用优化后的阈值参数对冬小麦空间分布进行提取。通过地面验证表明,利用本研究所提方法获取的冬小麦识别结果分类精度均达到较高水平。其中冬小麦识别结果总量精度达到了99.99%,证明本研究所提阈值模型参数优化方法冬小麦提取分类结果总量控制效果良好;同时,与传统的阈值法、最大似然和支持向量机等分类方法相比,本研究所提阈值模型参数优化法区域冬小麦作物分类总体精度和Kappa系数分别都有所提高,其中,总体精度分别提高4.55%、2.43%和0.15%,Kappa系数分别提高0.12、0.06和0.01,这体现出SCE-UA全局优化算法对提高阈值模型冬小麦空间分布识别精度具有一定优势。以上研究结果证明了利用本研究所提基于作物面积统计数据总量控制以及SCE-UA全局优化算法支持下阈值模型参数优化作物分布制图方法的有效性和可行性,可获得高精度冬小麦作物空间分布制图结果,这对提高中国冬小麦空间分布制图精度和自动化水平具有一定意义,也可为农作物面积农业统计数据降尺度恢复重建和大范围区域作物空间分布制图研究提供一定技术参考。  相似文献   

3.
The goal of this research was to conduct an initial investigation into whether a time-series NDVI reference curve library for crops over a growing season for one year could be used to map crops for a different year. Time-series NDVI libraries of curves for 2001 and 2005 were investigated to ascertain whether or not the 2001 dataset could be used to map crops for 2005. The 2005 16-day composite MODIS 250 m NDVI data were used to extract NDVI values from 1,615 field sites representing alfalfa, corn, sorghum, soybeans, and winter wheat. A k-means cluster analysis of NDVI values from the field sites was performed to identify validation sites with time-series NDVI spectral profiles characteristic of the major crop types grown in Kansas. After completing the field site refinement process, there were 1,254 field sites retained for further analysis, referred to as "final" field sites. The methods employed to evaluate whether the MODIS-based NDVI profiles for major crops in Kansas are stable from year-to-year involved both graphical and statistical analyses. First, the time-series NDVI values for 2005 from the final field sites were aggregated by crop type and the crop NDVI profiles were then visually assessed and compared to the profiles of 2001 to ascertain if each crop's unique phenological pattern was consistent between the two years. Second, separability within each crop class in the time-series NDVI data between 2001 and 2005 was investigated numerically using the Jeffries-Matusita (JM) distance statistic. The results seem to suggest that time-series NDVI response curves for crops over a growing period for one year of valid ground reference data may be useful for mapping crops for a different year when minor temporal shifts in the NDVI values (resulting from inter-annual climate variations or changes in agricultural management practices) are taken into account.  相似文献   

4.
The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green\red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the exploitation of representative temporal information that is collected with accessible and simple devices, for the subsequent determination of optimal temporal acquisition of images by overhead sensors, for vegetation mapping over larger areas.  相似文献   

5.
基于1983—1999年7 d时间分辨率5 km空间分辨率的AVHRR传感器数据,利用曲线特征点的物候监测方法,反演获得华北地区冬小麦关键物候期并分析其时空演变规律。结果表明:1)冬小麦的拔节期、抽穗期和成熟期主要集中在60—100、105—125和120—155 d。冬小麦物候期空间格局特征和纬度相关,纬度每升高一度冬小麦的拔节期、抽穗期和成熟期分别推迟了5.2、3.5和3.1 d。2)1983年以来,整个研究区的冬小麦物候期呈现提前趋势,每十年冬小麦的拔节期、抽穗期和成熟期分别提前了0.7、3.1、1.9 d。  相似文献   

6.
We used RapidEye and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data to study terrain illumination effects on 3 vegetation indices (VIs) and 11 phenological metrics over seasonal deciduous forests in southern Brazil. We applied TIMESAT for the analysis of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) derived from the MOD13Q1 product to calculate phenological metrics. We related the VIs with the cosine of the incidence angle i (Cos i) and inspected percentage changes in VIs before and after topographic C-correction. The results showed that the EVI was more sensitive to seasonal changes in canopy biophysical attributes than the NDVI and Red-Edge NDVI, as indicated by analysis of non-topographically corrected RapidEye images from the summer and winter. On the other hand, the EVI was more sensitive to terrain illumination, presenting higher correlation coefficients with Cos i that decreased with reduction in the canopy background L factor. After C-correction, the RapidEye Red-Edge NDVI, NDVI, and EVI decreased 2%, 1%, and 13% over sunlit surfaces and increased up to 5%, 14%, and 89% over shaded surfaces, respectively. The EVI-related phenological metrics were also much more affected by topographic effects than the NDVI-derived metrics. From the set of 11 metrics, the 2 that described the period of lower photosynthetic activity and seasonal VI amplitude presented the largest correlation coefficients with Cos i. The results showed that terrain illumination is a factor of spectral variability in the seasonal analysis of phenological metrics, especially for VIs that are not spectrally normalized.  相似文献   

7.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

8.
Crop phenological parameters, such as the start and end time of the crop growth, the total length of the growing season, time of peak vegetation and rate of greening and senescence are important for planning crop management and crop diversification/intensification. Multi-temporal remote sensing data provides opportunity to characterize the crop phenology at regional level. This study was conducted during the kharif season of the year 2001–02 for Punjab. The ten-day Normalised Difference Vegetation Index (NDVI) composite products, with 1 km spatial resolution, available from the Vegetation sensor onboard SPOT4 were used for the study. Twenty-one temporal datasets from May 1, 2001 to November 21, 2001 were used. Logical modelling approach was followed to compute the minimum and maximum NDVI, the amplitude of NDVI, the threshold NDVI during sowing and harvest, the crop duration, integrated NDVI and skewness of profile. The analysis showed that before July beginning, in the whole of Punjab, sowing/planting was over. It was found that the crop emergence in the eastern part of the state started earlier than the western region. The maximum NDVI, which represented peak vegetative stage, was above 0.7 and occurred mostly during August. The duration of crops ranged between 90–140 days, with majority between 110–120 days. Total integrated NDVI in Punjab was generally above 60. Using principal component analysis and divergence analysis seven best metrics were selected for crop discrimination.  相似文献   

9.
Iraq contains the Great Mesopotamian alluvial plain of the Euphrates and Tigris rivers. Its regional vegetation phenological patterns are worthy of investigation because relatively little is known about the phenology of semi-arid environments, and because their inter-annual variation is expected to be driven by uncertain rainfall and varied topography. The aim of this research was to assess and map the spatial variation in key land surface phenology (LSP) parameters over the last decade and their relation with elevation. It is the first study mapping land surface phenology during last decade over the whole of Iraq, and one of only a few studies on vegetation phenology in a semi-arid environment. Time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) normalised difference vegetation index (NDVI) data at 250 m spatial resolution and 8 day temporal resolution, were employed to map the spatial variation in three LSP parameters for the major vegetation types in Iraq during 2001–2012. LSP parameters were defined by inflection points after smoothing the vegetation phenological signals using the Fourier technique. The estimated key LSP parameters indicated that the relatively shorter length of season (LOS) in the north of Iraq resulted from a delayed start of season (SOS). Greater spatial variation occurred in the SOS than end of season (EOS), which may be due to the spatial distribution of rainfall and temperature as a function of elevation. A positive correlation was observed for SOS and EOS with elevation for all major land cover types with EOS producing the largest positive correlation (R2 = 0.685, R2 = 0.638 and R2 = 0.588, p < 0.05 in shrubland, cropland and grassland, respectively). The magnitude of delay in SOS and EOS increased in all land cover types along a rising elevation gradient where for each 500 m increase, SOS was delayed by around 25 or more days and EOS delayed by around 22 or more days, except for grassland. The SOS and EOS also varied temporally during the last decade, particularly the SOS in the lowland, north of the country where the standard deviation was around 80 to 120 days, due mainly to the practice of crop rotation and the traditional biennial cropping system. Thus, the results of this research emphasize the effect of elevation on key LSP parameters over Iraq, for all major vegetation types.  相似文献   

10.
Remote sensing techniques are capable of identifying a particular crop as well as monitoring its growing stages, crop vigor, and biomass. Due to the increasing demand for food staples, potato cultivation in Bangladesh has increased substantially over the last decade. A study was carried out in the Munshiganj area, the main potato-producing district in Bangladesh, to assess the growth of potatoes by modeling its important life metrics. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) products were extracted from MODIS Surface Reflectance Eight-Day L3 Global 500 m data from November 25, 2005 to March 6, 2006. NDVI and LAI were extracted for 50 selected fields in the study area and used to construct potato phenological curves. Twenty-two life metrics were derived for potato from the phenological curves. The first 12 metrics are the basic life metrics of potato and the others are supplementary. Results showed a significant amplitude and distinct response period of these vegetation indices. Based on the phenological curves, the spatial distribution of potato growth was estimated for the study area for both NDVI and LAI. The effect of temperature on crop phenology was examined during the potato growing season. It was found that significant growth occurred when the temperature was relatively low. This study demonstrates that remote sensing data can be effectively used to study potato growth in Bangladesh.  相似文献   

11.
ABSTRACT

The temporal resolution of vegetation indices (VIs) determines the details of seasonal variation in vegetation dynamics observed by remote sensing, but little has been known about how the temporal resolution of VIs affects the retrieval of land surface phenology (LSP) of grasslands. This study evaluated the impact of temporal resolution of MODIS NDVI, EVI, and per-pixel green chromatic coordinate (GCCpp) on the quality and accuracy of the estimated LSP metrics of prairie grasslands. The near-surface PheonoCam phenology data for grasslands centered over Lethbridge PhenoCam grassland site were used as the validation datasets due to the lack of in situ observations for grasslands in the Prairie Ecozone. MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data from 2001 to 2017 were used to compute the time series of daily reference and to simulate 2–32 day MODIS VIs. The daily reference and simulated multi-day time series were fitted with the double logistic model, and the LSP metrics were then retrieved from the modeled daily time series separately. Comparison within satellite-based estimates showed no significant difference in the phenological metrics derived from daily reference and multi-day VIs resampled at a time step less than 18 days. Moreover, a significant decline in the ability of multi-day VIs to predict detailed temporal dynamics of daily reference VIs was revealed as the temporal resolution increased. Besides, there were a variety of trends for the onset of phenological transitions as the temporal resolution of VIs changed from 1 to 32 days. Comparison with PhenoCam phenology data presented small and insignificant differences in the mean bias error (MBE) and the mean absolute error (MAE) of grassland phenological metrics derived from daily, 8-, 10-, 14-, and 16-day MODIS VIs. Overall, this study suggested that the MODIS VIs resampled at a time step less than 18 days are favorable for the detection of grassland phenological transitions and detailed seasonal dynamics in the Prairie Ecozone.  相似文献   

12.
Abstract

While data like HJ-1 CCD images have advantageous spatial characteristics for describing crop properties, the temporal resolution of the data is rather low, which can be easily made worse by cloud contamination. In contrast, although Moderate Resolution Imaging Spectroradiometer (MODIS) can only achieve a spatial resolution of 250 m in its normalised difference vegetation index (NDVI) product, it has a high temporal resolution, covering the Earth up to multiple times per day. To combine the high spatial resolution and high temporal resolution of different data sources, a new method (Spatial and Temporal Adaptive Vegetation index Fusion Model [STAVFM]) for blending NDVI of different spatial and temporal resolutions to produce high spatial–temporal resolution NDVI datasets was developed based on Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). STAVFM defines a time window according to the temporal variation of crops, takes crop phenophase into consideration and improves the temporal weighting algorithm. The result showed that the new method can combine the temporal information of MODIS NDVI and spatial difference information of HJ-1 CCD NDVI to generate an NDVI dataset with both high spatial and high temporal resolution. An application of the generated NDVI dataset in crop biomass estimation was provided. An average absolute error of 17.2% was achieved. The estimated winter wheat biomass correlated well with observed biomass (R 2 of 0.876). We conclude that the new dataset will improve the application of crop biomass estimation by describing the crop biomass accumulation in detail. There is potential to apply the approach in many other studies, including crop production estimation, crop growth monitoring and agricultural ecosystem carbon cycle research, which will contribute to the implementation of Digital Earth by describing land surface processes in detail.  相似文献   

13.
Phenology is a sensitive and critical feature of vegetation and is a good indicator for climate change studies. The global inventory modelling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) has been the most widely used data source for monitoring of the vegetation dynamics over large geographical areas in the past two decades. With the release of the third version of the NDVI (GIMMS NDVI3g) recently, it is important to compare the NDVI3g data with those of the previous version (NDVIg) to link existing studies with future applications of the NDVI3g in monitoring vegetation phenology. In this study, the three most popular satellite start of vegetation growing season (SOS) extraction methods were used, and the differences between SOSg and SOS3g arising from the methods were explored. The amplitude and the peak values of the NDVI3g are higher than those of the NDVIg curve, which indicated that the SOS derived from the NDVIg (SOSg) was significantly later than that derived from the NDVI3g (SOS3g) based on all the methods, for the whole northern hemisphere. In addition, SOSg and SOS3g both showed an advancing trend during 1982–2006, but that trend was more significant with SOSg than with SOS3g in the results from all three methods. In summary, the difference between SOSg and SOS3g (in the multi-year mean SOS, SOS change slope and the turning point in the time series) varied among the methods and was partly related to latitude. For the multi-year mean SOS, the difference increased with latitude intervals in the low latitudes (0–30°N) and decreased in the mid- and high-latitude intervals. The GIMMS NDVI3g data-sets seemed more sensitive than the GIMMS NDVIg in detecting information about the ground, and the SOS3g data were better correlated both with the in situ observations and the SOS derived from the Moderate Resolution Imaging Spectroradiometer NDVI. For the northern hemisphere, previous satellite measures (SOS derived from GIMMS NDVIg) may have overestimated the advancing trend of the SOS by an average of 0.032 d yr–1.  相似文献   

14.
Land surface phenology has been widely retrieved although no consensus exists on the optimal satellite dataset and the method to extract phenology metrics. This study is the first comprehensive comparison of vegetation variables and methods to retrieve land surface phenology for 1999–2017 time series of Copernicus Global Land products derived from SPOT-VEGETATION and PROBA-V data. We investigated the sensitivity of phenology to (I) the input vegetation variable: normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fraction of vegetation cover (FCOVER); (II) the smoothing and gap filling method for deriving seasonal trajectories; and (III) the method to extract phenological metrics: thresholds based on a percentile of the annual amplitude of the vegetation variable, autoregressive moving averages, logistic function fitting, and first derivative methods. We validated the derived satellite phenological metrics (start of the season (SoS) and end of the season (EoS)) using available ground observations of Betula pendula, B. alleghaniensis, Acer rubrum, Fagus grandifolia, and Quercus rubra in Europe (Pan-European PEP725 network) and the USA (National Phenology Network, USA-NPN). The threshold-based method applied to the smoothed and gap-filled LAI V2 time series agreed best with the ground phenology, with root mean square errors of ˜10 d and ˜25 d for the timing of SoS and EoS respectively. This research is expected to contribute for the operational retrieval of land surface phenology within the Copernicus Global Land Service.  相似文献   

15.
The significance of crop yield estimation is well known in agricultural management and policy development at regional and national levels. The primary objective of this study was to test the suitability of the method, depending on predicted crop production, to estimate crop yield with a MODIS-NDVI-based model on a regional scale. In this paper, MODIS-NDVI data, with a 250 m resolution, was used to estimate the winter wheat (Triticum aestivum L.) yield in one of the main winter-wheat-growing regions. Our study region is located in Jining, Shandong Province. In order to improve the quality of remote sensing data and the accuracy of yield prediction, especially to eliminate the cloud-contaminated data and abnormal data in the MODIS-NDVI series, the Savitzky–Golay filter was applied to smooth the 10-day NDVI data. The spatial accumulation of NDVI at the county level was used to test its relationship with winter wheat production in the study area. A linear regressive relationship between the spatial accumulation of NDVI and the production of winter wheat was established using a stepwise regression method. The average yield was derived from predicted production divided by the growing acreage of winter wheat on a county level. Finally, the results were validated by the ground survey data, and the errors were compared with the errors of agro-climate models. The results showed that the relative errors of the predicted yield using MODIS-NDVI are between −4.62% and 5.40% and that whole RMSE was 214.16 kg ha−1 lower than the RMSE (233.35 kg ha−1) of agro-climate models in this study region. A good predicted yield data of winter wheat could be got about 40 days ahead of harvest time, i.e. at the booting-heading stage of winter wheat. The method suggested in this paper was good for predicting regional winter wheat production and yield estimation.  相似文献   

16.
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.  相似文献   

17.
Crop acreage and its spatial distribution are a base for agriculture related works. Current research combining medium and low spatial resolution images focuses on data fusion and unmixing methods. The purpose of the former is to generate synthetic fine spatial resolution data instead of directly solving the problem. In the latter, high-resolution data is only used to provide endmembers and the result is usually an abundance map rather than the true spatial distribution data. To solve this problem, this paper designs a conceptual model which divides the study area into different types of pixels at a MODIS 250 m scale. Only three types of pixels contain winter wheat, i.e., pure winter wheat pixels (PA), the mixed pixels comprising winter wheat and other vegetation (MA) and the mixed pixels comprising winter wheat and other crops (MB). Different strategies are used in processing them. (1) Within the pure cultivated land pixels, the Kullback–Leibler (KL) divergence is employed to analyze the similarity between unknown pixels and the pure winter wheat samples on the temporal change characteristics of NDVI. Further PA is identified. (2) For MA, a proposed reverse unmixing method is firstly used to extract the temporal change information of cultivated land components, after which winter wheat is identified from the cultivated land components as previously described. (3) For MB which only appears on the border of PA, a mask is created by expanding the PA and temporal difference is utilized to identify winter wheat under the mask. Finally, these three results are integrated at a TM scale with the aid of 25 m resolution land use data. We applied the proposed solution and obtained a good result in the main agricultural area of the Yiluo River Basin. The identified winter wheat planting acreage is 161,050.00 hm2. The result is validated based on the five-hundred random validation points. Overall accuracy is 94.80% and Kappa coefficient is 0.85. This demonstrates that the temporal information reflecting crop growth is also an important indicator, and the KL divergence makes it more convenient in identifying winter wheat. This research provided a new perspective for the combination of low and medium spatial resolution remote sensing images. The proposed solution can also be effectively applied in other places and countries for the crop which has a clear temporal change characteristic that is different from others.  相似文献   

18.
Satellite-based remote sensed phenology has been widely used to assess global climate change. However, it is constrained by uncertain linkages with photosynthesis activity. Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectroradiometer (MODIS) products, including fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) for three temperate deciduous broadleaf forests in North America between 2001 and 2009. These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves (daily gross primary productivity, GPP) measured by an eddy covariance flux tower. The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR, and closer to the date of 5% and 10% increase of GPP for EVI and LAI, respectively. The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10% GPP increase for NDVI, and closer to the date of 20% GPP increase for fAPAR, LAI and EVI, respectively. These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.  相似文献   

19.
In this study, an attempt has been made to derive the spatial patterns of temporal trends in phenology metrics and productivity of crops grown, at disaggregated level in Indo-Gangetic Plains of India (IGP), which are helpful in understanding the impact of climatic, ecological and socio-economic drivers. The NOAA-AVHRR NDVI PAL dataset from 1981 to 2001 was stacked as per the crop year and subjected to Savitzky-Golay filtering. For crop pixels, maximum and minimum values of normalized difference vegetation index (NDVI), their time of occurrence and total duration of kharif (June-October) and rabi (November–April) crop seasons were derived for each crop year and later subjected to pixel-wise regression with time to derive the rate and direction of change. The maximum NDVI value showed increasing trends across IGP during both kharif and rabi seasons indicating a general increase in productivity of crops. The trends in time of occurrence of peak NDVI during kharif dominated with rice showed that the maximum vegetative growth stage was happening early with time during study period across most of Punjab, North Haryana, Parts of Central and East Uttar Pradesh and some parts of Bihar and West Bengal. Only central parts of Haryana showed a delay in occurrence of maximum vegetative stage with time. During rabi, no significant trends in occurrence of peak NDVI were observed in most of Punjab and Haryana except in South Punjab and North Haryana where early occurrence of peak NDVI with time was observed. Most parts of Central and Eastern Uttar Pradesh, North Bihar and West Bengal showed a delay in occurrence of peak NDVI with time. In general, the rice dominating system was showing an increase in duration with time in Punjab, Haryana, Western Uttar Pradesh, Central Uttar Pradesh and South Bihar whereas in some parts of North Bihar and West Bengal a decrease in the duration with time was also observed. During rabi season, except Punjab, the wheat dominating system was showing a decreasing trend in crop duration with time.  相似文献   

20.
Monitoring of Agricultural crops using remote sensing data is an emerging tool in recent years. Spatial determination of sowing date is an important input of any crop model. Geostationary satellite has the capability to provide data at high temporal interval to monitor vegetation throughout the entire growth period. A study was conducted to estimate the sowing date of wheat crop in major wheat growing states viz. Punjab, Haryana, Uttar Pradesh (UP), Madhya Pradesh (MP), Rajasthan and Bihar. Data acquired by Charged Couple Detector (CCD) onboard Indian geostationary satellite INSAT 3A have continental (Asia) coverage at 1 km?×?1 km spatial resolution in optical spectral bands with high temporal frequency. Daily operational Normalized Difference Vegetation Index (NDVI) product from INSAT 3A CCD available through Meteorological and Oceanographic Satellite Data Archival Centre (MOSDAC) was used to estimate sowing date of wheat crop in selected six states. Daily NDVI data acquired from September 1, 2010 to December 31, 2010 were used in this study. A composite of 7 days was prepared for further analysis of temporal profile of NDVI. Spatial wheat crop map derived from AWiFS (56 m) were re-sampled at INSAT 3A CCD parent resolution and applied over each 7 day composite. The characteristic temporal profiles of 7 day NDVI composite was used to determine sowing date. NDVI profile showed decreasing trend during maturity of kharif crop, minimum value after harvest and increasing trend after emergence of wheat crop. A mathematical model was made to capture the persistent positive slope of NDVI profile after an inflection point. The change in behavior of NDVI profile was detected on the basis of change in NDVI threshold of 0.3 and sowing date was estimated for wheat crop in six states. Seven days has been deducted after it reached to threshold value with persistent positive slope to get sowing date. The clear distinction between early sowing and late sowing regions was observed in study area. Variation of sowing date was observed ranging from November 1 to December 20. The estimated sowing date was validated with the reported sowing date for the known wheat crop regions. The RMSD of 3.2 (n?=?45) has been observed for wheat sowing date. This methodology can also be applied over different crops with the availability of crop maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号