首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
2.
Capturing the scope and trajectory of changes in land use and land cover (LULC) is critical to urban and regional planning, natural resource sustainability and the overall information needs of policy makers. Studies on LULC change are generally conducted within peaceful environments and seldom incorporate areas that are politically volatile. Consequently, the role of civil conflict on LULC change remains elusive. Using a dense time stack of Landsat Thematic Mapper images and a hybrid classification approach, this study analysed LULC changes in Kono District between 1986–1991, 1991–2002 and 2002–2007 with the overarching goal of elucidating deviations from typical changes in LULC caused by Sierra Leone's civil war (1991–2002). Informed by social survey and secondary data, this study engaged the drivers that facilitated LULC changes during war and non-war periods in a series of spatial regression models in exploring the interface between civil conflict and LULC change.  相似文献   

3.
基于ASTER GED产品的地表发射率估算   总被引:1,自引:0,他引:1  
地表发射率是地表温度反演的重要输入参数,为了解决现有地表发射率估算方法在裸露地表精度较差的问题,本文基于最新的ASTER全球地表发射率产品(ASTER GED)和基于植被覆盖度的方法(VCM),提出了一个改进的地表发射率估算方法。首先,利用ASTER GED产品求解裸土发射率,然后,利用ASTER波谱库中的植被发射率和植被覆盖度结合VCM方法计算地表发射率。利用张掖地区2012年11景ASTER TES算法反演的地表发射率产品和实测地表发射率数据进行了验证,同时利用一景Landsat 8 TIRS数据分析了对地表温度反演精度的影响。结果表明该方法估算的地表发射率整体精度较高,可以有效改进裸露地表的发射率估算精度,用于支持利用多种热红外传感器数据生产高精度的地表温度产品。  相似文献   

4.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

5.
Abstract

This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies.  相似文献   

6.
Soil is a vital part of the natural environment and is always responding to changes in environmental factors, along with the influences of anthropogenic factors and land use changes. The long-term change in soil properties will result in change in soil health and fertility, and hence the soil productivity. Hence, the main aim of this paper focuses on the analysis of land use/land cover (LULC) change pattern in spatial and temporal perspective and to present its impact on soil properties in the Merawu catchment over the period of 18?years. Post classification change detection was performed to quantify the decadal changes in historical LULC over the periods of 1991, 2001 and 2009. The pixel to pixel comparison method was used to detect the LULC of the area. The key LULC types were selected for investigation of soil properties. Soil samples were analysed in situ to measure the physicochemical soil properties. The results of this study show remarkable changes in LULC in the period of 18?years. The effect of land cover change on soil properties, soil compaction and soil strength was found to be significant at a level of <0.05.  相似文献   

7.
Effect of canal on land use/land cover using remote sensing and GIS   总被引:3,自引:0,他引:3  
The monitoring of land use/land covers (LULCs) is an indispensable exercise for all those involved in executing policies to optimize the use of natural resources and minimize the ill impacts on the environment. The study here aims at analyzing the changes that occurred in LULC over a time span from 1990 to 2005 using multi date data of a part of Punjab. The digital data consisted of two sets of Landsat Thematic Mapper (TM) data and one set of IRS-1C data. Utilizing hybrid classification technique for interpretation and on field validation, it has been found that canal irrigation leads to changes in LULC as there is a change in cropping pattern as well as increase in water logged area.  相似文献   

8.
This paper presents a land use and land cover (LULC) classification approach that accounts landscape heterogeneity. We addressed this challenge by subdividing the study area into more homogeneous segments using several biophysical and socio-economic factors as well as spectral information. This was followed by unsupervised clustering within each homogeneous segment and supervised class assignment. Two classification schemes differing in their level of detail were successfully applied to four landscape types of distinct LULC composition. The resulting LULC map fulfills two major requirements: (1) differentiation and identification of several LULC classes that are of interest at the local, regional, and national scales, and (2) high accuracy of classification. The approach overcomes commonly encountered difficulties of classifying second-level classes in large and heterogeneous landscapes. The output of the study responds to the need for comprehensive LULC data to support ecosystem assessment, policy formulation, and decision-making towards sustainable land resources management.  相似文献   

9.
Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control efforts. The principal objective of this research was to propose a new protocol for LULC classification for large areas based on readily available ancillary information and analysis of three single date Landsat ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflectance values. In this research, it was found that incorporating climatic and topographic conditions helped delineate what was otherwise overlapping information. This study determined that a late summer Landsat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping. The analysis as presented in this paper could also be done with satellite images taken at different times of the season. It may be, particularly for other climatic zones, that there is a better time of season for image acquisition that would present more information.  相似文献   

10.
作为驱动地表与大气之间能量交换的关键物理量,地表温度在众多领域中都发挥着重要作用,包括气候变化、环境监测、蒸散发估算以及地热异常勘探等。Landsat热红外数据因其时间连续性和高空间分辨率等特点被广泛应用于地表温度反演中。本文详细地介绍了Landsat热红外传感器及其可用的数据与产品的现状,梳理了2001年—2020年20年间基于Landsat热红外数据的地表温度遥感反演与应用的相关文献发表及互引情况,系统地综述了基于Landsat热红外数据的地表温度反演算法,包括基于辐射传输方程的算法、单窗算法、普适性单通道算法、实用单通道算法和分裂窗算法等。在此基础上,进一步介绍了每种算法的参数化方案,包括地表比辐射率和大气参数的估算方法。最后针对Landsat热红外数据地表温度遥感反演提出了未来可能的发展趋势与研究方向。  相似文献   

11.
Remote classification of land-use/land-cover (LULC) types in Brazil's Cerrado ecoregion is necessary because knowledge of Cerrado LULC is incomplete, sources of inaccuracy are unknown, and high-resolution data are required for the validation of moderate-resolution LULC maps. The aim of this research is to discriminate between Cerrado and agriculture using high-resolution Landsat 7 ETM+ imagery for the western region of Bahia state in northeastern Brazil. The Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM) algorithms were applied to a ~3000 km2 subset, yielding comparable classification accuracies. The panchromatic band was reserved for validation. User's and producer's accuracies were highest for non-irrigated agriculture (~94%) but lower for Cerrado Lato Sensu (89%). Classification errors likely resulted from spatial and spectral characteristics of particular classes (e.g. riparian forest and burned) and overestimation of other classes (e.g. Eucalyptus and water). Manual misinterpretation of validation data may have also led to lower reported classification accuracies.  相似文献   

12.
Multitemporal land cover classification over urban areas is challenging, especially when using heterogeneous data sources with variable quality attributes. A prominent challenge is that classes with similar spectral signatures (such as trees and grass) tend to be confused with one another. In this paper, we evaluate the efficacy of image point cloud (IPC) data combined with suitable Bayesian analysis based time-series rectification techniques to improve the classification accuracy in a multitemporal context. The proposed method uses hidden Markov models (HMMs) to rectify land covers that are initially classified by a random forest (RF) algorithm. This land cover classification method is tested using time series of remote sensing data from a heterogeneous and rapidly changing urban landscape (Kuopio city, Finland) observed from 2006 to 2014. The data consisted of aerial images (5 years), Landsat data (all 9 years) and airborne laser scanning data (1 year). The results of the study demonstrate that the addition of three-dimensional image point cloud data derived from aerial stereo images as predictor variables improved overall classification accuracy, around three percentage points. Additionally, HMM-based post processing reduces significantly the number of spurious year-to-year changes. Using a set of 240 validation points, we estimated that this step improved overall classification accuracy by around 3.0 percentage points, and up to 6 to 10 percentage points for some classes. The overall accuracy of the final product was 91% (kappa = 0.88). Our analysis shows that around 1.9% of the area around Kuopio city, representing a total area of approximately 0.61 km2, experienced changes in land cover over the nine years considered.  相似文献   

13.
Coastal zones are most vulnerable for landuse changes in this rapid industrialization and urbanization epoch. It is necessary to evaluate land use — land cover (LULC) changes to develop efficient management strategies. The main objective of this paper is to evaluate and quantity Abu Dhabi coastal zone LULC changes from 1972 to 2000 using multi-temporal LANDSAT satellite data and digital change detection techniques. Supervised classification coupled with expert visual interpretation techniques were used to produce LULC classified images with an accuracy of 88%. Change detection process was achieved by applying post-classification comparison techniques in ENVI software. From this study it has been observed that the important coastal landuse types of Abu Dhabi coast .i.e. wetlands and woody Vegetation (Mangrove, represented by a single species,Avicennia marina) have been reduced drastically in their extent due to reclamation, dredging, tipping and other anthropogenic activities along the coastal zone. However, it has been observed that there is rapid increase in the man-made plantation and managed vegetation from 1990 to 2000 due to the Abu Dhabi government initiation. This study has given good insight into Abu Dhabi coastal zone changes during last 3 decades.  相似文献   

14.
In this study we explored the potential of open source data mining software support to classify freely available Landsat image. The study identified several major classes that can be distinguished using Landsat data of 30 m spatial resolution. Decision tree classification (DTC) using Waikato environment for knowledge analysis (WEKA), open source software is used to prepare land use land cover (LULC) map and the result is compared with supervised (maximum likelihood classifier – MLC) and unsupervised (Iterative self-organizing data analysis technique - ISODATA clustering) classification techniques. The accuracy assessment indicates highest accuracy of the map prepared using DTC with overall accuracy (OA) 92 % (kappa = 0.90) followed by MLC with OA 88 % (kappa = 0.84) and ISODATA OA 76 % (kappa = 0.69). Results indicate that data set with a good definition of training sites can produce LULC map having good overall accuracy using decision tree. The paper demonstrates utility of open source system for information extraction and importance of DTC algorithm.  相似文献   

15.
ABSTRACT

Data on land use and land cover (LULC) are a vital input for policy-relevant research, such as modelling of the human population, socioeconomic activities, transportation, environment, and their interactions. In Europe, CORINE Land Cover has been the only data set covering the entire continent consistently, but with rather limited spatial detail. Other data sets have provided much better detail, but either have covered only a fraction of Europe (e.g. Urban Atlas) or have been thematically restricted (e.g. Copernicus High Resolution Layers). In this study, we processed and combined diverse LULC data to create a harmonised, ready-to-use map covering 41 countries. By doing so, we increased the spatial detail (from 25 to one hectare) and the thematic detail (by seven additional LULC classes) compared to the CORINE Land Cover. Importantly, we decomposed the class ‘Industrial and commercial units’ into ‘Production facilities’, ‘Commercial/service facilities’ and ‘Public facilities’ using machine learning to exploit a large database of points of interest. The overall accuracy of this thematic breakdown was 74%, despite the confusion between the production and commercial land uses, often attributable to noisy training data or mixed land uses. Lessons learnt from this exercise are discussed, and further research direction is proposed.  相似文献   

16.
Abstract

Land use/land cover (LULC) classification with high accuracy is necessary, especially in eco-environment research, urban planning, vegetation condition study and soil management. Over the last decade a number of classification algorithms have been developed for the analysis of remotely sensed data. The most notable algorithms are the object-oriented K-Nearest Neighbour (K-NN), Support Vector Machines (SVMs) and the Decision Trees (DTs) amongst many others. In this study, LULC types of Selangor area were analyzed on the basis of the classification results acquired using the pixel-based and object-based image analysis approaches. SPOT 5 satellite images with four spectral bands from 2003 and 2010 were used to carry out the image classification and ground truth data were collected from Google Earth and field trips. In pixel-based image analysis, a supervised classification was performed using the DT classifier. On the other hand, object-oriented (K-NN) image analysis was evaluated using standard nearest neighbour as classifier. Subsequently SVM object-based classification was performed. Five LULC categories were extracted and the results were compared between them. The overall classification accuracies for 2003 and 2010 showed that the object-oriented (K-NN) (90.5% and 91%) performed better results than the pixel-based DT (68.6% and 68.4%) and object-based SVM (80.6% and 78.15%). In general, the object-oriented (K-NN) performed better than both DTs and SVMs. The obtained LULC classification maps can be used to improve various applications such as change detection, urban design, environmental management and zooning.  相似文献   

17.
Spatio‐temporal prediction and forecasting of land surface temperature (LST) are relevant. However, several factors limit their usage, such as missing pixels, line drops, and cloud cover in satellite images. Being measured close to the Earth's surface, LST is mainly influenced by the land use/land cover (LULC) distribution of the terrain. This article presents a spatio‐temporal interpolation method which semantically models LULC information for the analysis of LST. The proposed spatio‐temporal semantic kriging (ST‐SemK) approach is presented in two variants: non‐separable ST‐SemK (ST‐SemKNSep) and separable ST‐SemK (ST‐SemKSep). Empirical studies have been carried out with derived Landsat 7 ETM+ satellite images of LST for two spatial regions: Kolkata, India and Dallas, Texas, U.S. It has been observed that semantically enhanced spatio‐temporal modeling by ST‐SemK yields more accurate prediction results than spatio‐temporal ordinary kriging and other existing methods.  相似文献   

18.
Land cover maps play an integral role in environmental management. However, countries and institutes encounter many challenges with producing timely, efficient, and temporally harmonized updates to their land cover maps. To address these issues we present a modular Regional Land Cover Monitoring System (RLCMS) architecture that is easily customized to create land cover products using primitive map layers. Primitive map layers are a suite of biophysical and end member maps, with land cover primitives representing the raw information needed to make decisions in a dichotomous key for land cover classification. We present best practices to create and assemble primitives from optical satellite using computing technologies, decision tree logic and Monte Carlo simulations to integrate their uncertainties. The concept is presented in the context of a regional land cover map based on a shared regional typology with 18 land cover classes agreed on by stakeholders from Cambodia, Laos PDR, Myanmar, Thailand, and Vietnam. We created annual map and uncertainty layers for the period 2000–2017. We found an overall accuracy of 94% when taking uncertainties into account. RLCMS produces consistent time series products using free long term historical Landsat and MODIS data. The customizable architecture can include a variety of sensors and machine learning algorithms to create primitives and the best suited smoothing can be applied on a primitive level. The system is transferable to all regions around the globe because of its use of publicly available global data (Landsat and MODIS) and easily adaptable architecture that allows for the incorporation of a customizable assembly logic to map different land cover typologies based on the user's landscape monitoring objectives  相似文献   

19.
In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of “returning farmland to transportation and huge expansion in military camps” was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time. Supported by the Al-Basrah University, Iraq, the Geo-information Science and Technology Program (No. IRT 0438)China).  相似文献   

20.
Understanding rates, patterns and types of land use and land cover (LULC) changes are essential for various decision-making processes. This study quantified LULC changes and the effect of urban expansion in three Saudi Arabian cities: Riyadh, Jeddah and Makkah using Landsat images of 1985, 2000 and 2014. Seasonal change of vegetation cover was conducted using normalised difference vegetation index, and object-based image analysis was used to classify the LULC changes. The overall accuracies of the classified maps ranged from 84 to 95%, which indicated sufficiently robust results. Urban area was the most changed land cover, and most of the converted land to urban was from bare soil. The seasonal analysis showed that the change of vegetation cover was not constant due to climatic conditions in these areas. The agricultural lands were significantly decreased between 1985 and 2014, and most of these lands were changed to bare soil due to dwindling groundwater resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号