首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tectonic observations in the northern Saih Hatat,Sultanate of Oman   总被引:1,自引:0,他引:1  
The Saih Hatat region, in northeastern Oman, is characterized by a large tectonic window, tectonically overlain during the upper Cretaceous by nappes composed of sedimentary rocks from the Mesozoic Hawasina ocean and the Samail ophiolite. In this window, the autochthonous sedimentary cover of the eastern Arabian Platform from the Late Neoproterozoic to the Cenomanian is well exposed. The oldest of these strata, the Hatat schists, were deformed into a NE-facing fold nappe during the upper Cretaceous. Within the overturned and thrusted lower limb of that fold nappe, we identified three small windows exposing stratigraphically younger Hiyam carbonates and Ordovician sandstone. The structural inventory of the windows and the surrounding area indicates three major tectonic phases. The first deformation led to NNE-SSW trending fold structures which probably formed simultaneously with the major fold nappe of the Hatat schists, followed by the extreme attenuation and thrusting of the lower limb of the fold nappe. The second phase was a gentle folding of the thrust with N-S oriented fold axes and third deformation phase that formed WNW-ESE oriented open folds. The windows are situated in the intersection of anticline axes of these two superposed fold generations and represent a mini basin-and-dome structure with an extension of just 1 km?×?1 km.  相似文献   

2.
 In Oman, the convergence between Arabia and Eurasia resulted in the Late Cretaceous overthrusting of oceanic crust and mantle lithosphere onto the Arabian continental margin. During this compressional event, a part of the continental plate was subducted to a depth of more than 60 km (0.5 GPa, 250–350  °C to more than 2.0 GPa, 550  °C) resulting in progressive metamorphism of the continental margin sediments, well exposed in the Saih Hatat tectonic window, northeastern Oman Mountains. We attempt to constrain the possibility of one continuous history of extension (starting along the east Arabian continental margin in the Permian) that was followed by one continuous history of convergence starting at 90 Ma near a dead oceanic ridge. This compression resulted in the observed progressive metamorphism by ophiolite overthrusting onto the continental margin. Constraining arguments are the palaeogeographic setting before ophiolite obduction of the As Sifah units and the Hawasina Complex near Ghurba. Detrital chromites in the Triassic–Cretaceous metasediments of the Hawasina Complex are compared with magmatic Semail chromites, and the whole-rock chemistry of these metasediments and associated metabasites are investigated. In contrast to former hypotheses, differences in the chemical composition between detrital and magmatic chromites, and the probable origin of all detrital chromites in the Hawasina Basin from Permian age oceanic rocks, suggest that the high-pressure metamorphic sediments of As Sifah can be considered as part of the basal deposits of the Hawasina Basin. Received: 1 September 1998 / Accepted: 18 January 1999  相似文献   

3.
The main terrains involved in the Cretaceous–Tertiary tectonism in the South Carpathians segment of the European Alpine orogen are the Getic–Supragetic and Danubian continental crust fragments separated by the Severin oceanic crust-floored basin. During the Early–Middle Cretaceous times the Danubian microplate acted initially as a foreland unit strongly involved in the South Carpathians nappe stacking. Multistage folding/thrusting events, uplift/erosion and extensional stages and the development of associated sedimentary basins characterize the South Carpathians during Cretaceous to Tertiary convergence and collision events. The main Cretaceous tectogenetic events responsible for contraction and crustal thickening processes in the South Carpathians are Mid-Cretaceous (“Austrian phase”) and Latest Cretaceous (“Laramide” or “Getic phase”) in age. The architecture of the South Carpathians suggests polyphase tectonic evolution and mountain building and includes from top to bottom: the Getic–Supragetic basement/cover nappes, the Severin and Arjana cover nappes, and Danubian basement/cover nappes, all tectonically overriding the Moesian Platform. The Severin nappe complex (including Obarsia and Severin nappes) with Late Jurassic–Early Cretaceous ophiolites and turbidites is squeezed between the Danubian and Getic–Supragetic basement nappes as a result of successive thrusting of dismembered units during the inferred Mid- to Late Cretaceous subduction/collision followed by tectonic inversion processes.

Early Cretaceous thick-skinned tectonics was replaced by thin-skinned tectonics in Late Cretaceous. Thus, the former Middle Cretaceous “Austrian” nappe stack and its Albian–Lower Senonian cover got incorporated in the intra-Senonian “Laramide/Getic” stacking of the Getic–Supragetic/Severin/Arjana nappes onto the Danubian nappe duplex. The two contraction events are separated by an extensional tectonic phase in the upper plate recorded by the intrusion of the “Banatitic” magmas (84–73 Ma). The overthrusting of the entire South Carpathian Cretaceous nappe stack onto the fold/thrust foredeep units and to the Moesian Platform took place in the Late Miocene (intra-Sarmatian) times and was followed by extensional events and sedimentary basin formation.  相似文献   


4.
DEFORMATIONAL AND METAMORPHIC HISTORY OF THE CENTRAL LONGMEN MOUNTAINS, SICHUAN CHINA1 ArneDC ,WorleyBA ,WilsonCJL ,etal.Differentialexhumationinresponsetoepisodicthrustingalongtheeasternmar ginoftheTibetanPlateau[J] .Tectonophysics,1997,2 80 :2 39~ 2 56 . 2 ChenSF ,WilsonCJL ,WorleyBA .TectonictransitionfromtheSongpan GarzeFoldBelttotheSichuanBasin,south westernChina[J] .BasinResearch ,1995,7:2 35~ 2 53. 3 ChenSF ,WilsonCJL .Emplaceme…  相似文献   

5.
Abstract

The study of the exotic blocks of the Hawasina Nappes (Sultanate of Oman) leads to give apposit data that allow us to propose a new paleogeographic evolution of the Oman margin in time and space. A revised classification of exotic blocks into different paleogeographical units is presented. Two newly introduced stratigraphic groups, the Ramaq Group (Ordovician to Triassic) and the Al Buda’ah Group (upper Permian to Jurassic) are interpreted as tilted blocks related to the Oman continental margin. The Kawr Group (middle Triassic to Cretaceous) is redefined and interpreted as an atoll-type seamount. The paleogeography and paleoenvironments of these units are integrated into a new scheme of the Neotethyan rifting history. Brecciae and olistoliths of the Hawasina series are interpreted to have originated from tectonic movements affecting the Oman margin and the Neotethyan ocean floor. The breccias of late Permian age were generated by the extension processes affecting the margin, and by the creation of the Neotethyan oceanic floor. The breccias of mid-late Triassic age coincide in time with the collision of the Cimmerian continents with Eurasia. In constrast, the breccias of late Jurassic and Cretaceous age are interpreted as resulting to the creation of a new oceanic crust (Semail) off the Oman margin.  相似文献   

6.
The classical concept of the nappe structure of the central Northern Calcareous Alps (NCA) is in contradiction with modern stratigraphic, structural, metamorphic and geochronological data. We first perform a palinspastic restoration for the time before Miocene lateral tectonic extrusion, which shows good continuity of structures, facies and diagenetic/metamorphic zones. We present a new nappe concept, in which the Tirolic unit practically takes the whole area of the central NCA and is divided into three subunits (nappes): Lower and Upper Tirolic subunit, separated by the Upper Jurassic Trattberg Thrust, and the metamorphic Ultra-Tirolic unit. The Hallstatt (Iuvavic) nappe(s) formed the highest unit, but were completely destroyed by erosion after nappe stacking. Remnants of the Hallstatt nappes are only represented by components of up to 1 km in size in Middle/Upper Jurassic radiolaritic wildflysch sediments ("Hallstatt Mélange" belonging to the Tirolic unit). Destruction of the continental margin started in Middle to Upper Jurassic time and prograded from the oceanic side towards the shelf. The original substratum of the external nappes (Bavaric units) of the NCA was largely the Austroalpine crystalline basement, of the internal nappes (Tirolic units) the weakly metamorphosed Palaeozoic sequences (Greywacke Zone and equivalents). Eocene movements caused limited internal deformation in the Tirolic unit.  相似文献   

7.
According to palinspastic reconstructions, the Neo-Tethys opening took place during the Permian between the Cimmerian fragments in the north and the Indo-Arabian margin in the south. Igneous remnants of this opening are exposed in Oman within either the Hawasina nappes or the para-autochtonous Arabian platform exposed in the Saih Hatat tectonic window. They consist predominantly of pillowed basaltic flows among which three groups have been distinguished. Group 1 is tholeiitic and characterized by low TiO2 and incompatible trace element contents, and a large range of Ndi values. Group 1 basalts are associated with distal sediments and plot near the boundary of or within the MORB field in the Pb–Pb correlation diagrams and between the MORB and Bulk Silica Earth (BSE) fields in Ndi–(206Pb/204Pb)i diagram. Group 2 basalts are alkaline and differ from Group 1 ones by their higher TiO2, La and Nb contents, and lower and more homogeneous Ndi values (+3 to +5). Group 2 volcanics are similar to alkali basalts from oceanic islands and share with Group 1 similar initial Pb ratios. Group 3 consists of tholeiitic and alkali basalts which are interbedded either with carbonate-platform sediments from the Saih Hatat window or with distal sediments from the Hawasina Nappes. This group differs from Groups 1 and 2 by its low to negative Ndi (+1.6 to −2). Group 1 likely derived from the mixing of depleted and enriched sources while Group 2 derived exclusively from an enriched source. There is no indication that continental crust was involved in the genesis of both Groups 1 and 2. In contrast, the low to negative Ndi values of Group 3 suggest that the magmas of this group were contaminated by the Arabian continental crust during their ascent. The geochemical features of the Middle Permian plume-related basalts suggest thus that the basement of the Hawasina basin was not genuine oceanic crust but either the thinned Arabian rifted continental margin or the continent–ocean transition zone of the Neo-Tethys.  相似文献   

8.
The nappe pile presently cropping out in the central sector of the Ligurian Alps, is represented by some principal groups of tectonic units. Starting from the foreland, the outer and lower, weakly metamorphic (up to 0.3 GPa) Briançonnais units support the high-pressure (up to 1.3 GPa) ensemble of inner Briançonnais nappes, in turn overridden by the Prepiedmont units, sourced from the European continental margin. Prepiedmont units form two superposed groups. The lower is composed only of a pre-Namurian basement (Alpine metamorphism up to 0.6 GPa); and the upper is mainly composed of a slightly metamorphic (greenschist facies) post-Namurian cover. At the top lie the high-pressure metamorphosed (up to 0.8 GPa in the sector here considered) ophiolitic units. The group of the non-metamorphic Helminthoid Flysch nappes (original stratigraphic cover of the ophiolitic units) has travelled the greatest distance and is presently mainly set onto the outer part of the chain. Only events up to the stacking of the nappe pile are discussed, disregarding late-stage deformation. As the examined sector is located at a considerable distance from the collisional zone, late processes did not change the overall order of superposition formerly acquired. The model proposes the development of two major, subhorizontal detachment surfaces. The first, shallower one confines at the base a very thin-skinned set of nappes, nearly totally made up of Prepiedmont sedimentary covers that are bounded at their top by the Helminthoid Flysch units. Both these groups underwent a mainly horizontal outwards transport. In contrast, the underlying Prepiedmont crust and the adjoining Briançonnais inner sector (separated by the second, deeper major detachment surface) were progressively dragged into the subduction zone under the ophiolitic units and duplexes were generated. Exhumation of the metamorphic units occurred along the subduction channel, as did stacking of the nappe pile.  相似文献   

9.
The Austroalpine nappe systems in SE-Switzerland and N-Italy preserve remnants of the Adriatic rifted margin. Based on new maps and cross-sections, we suggest that the complex structure of the Campo, Grosina/Languard, and Bernina nappes is inherited largely from Jurassic rifting. We propose a classification of the Austroalpine domain into Upper, Middle and Lower Austroalpine nappes that is new because it is based primarily on the rift-related Jurassic structure and paleogeography of these nappes. Based on the Alpine structures and pre-Alpine, rift-related geometry of the Lower (Bernina) and Middle (Campo, Grosina/Languard) Austroalpine nappes, we restore these nappes to their original positions along the former margin, as a means of understanding the formation and emplacement of the nappes during initial reactivation of the Alpine Tethyan margin. The Campo and Grosina/Languard nappes can be interpreted as remnants of a former necking zone that comprised pre-rift upper and middle crust. These nappes were juxtaposed with the Mesozoic cover of the Bernina nappe during Jurassic rifting. We find evidence for low-angle detachment faults and extensional allochthons in the Bernina nappe similar to those previously described in the Err nappe and explain their role during subsequent reactivation. Our observations reveal a strong control of rift-related structures during the subsequent Alpine reactivation on all scales of the former distal margin. Two zones of intense deformation, referred to as the Albula-Zebru and Lunghin-Mortirolo movement zones, have been reactivated during Alpine deformation and cannot be described as simple monophase faults or shear zones. We propose a tectonic model for the Austroalpine nappe systems that link inherited, rift-related structures with present-day Alpine structures. In conclusion, we believe that apart from the direct regional implications, the results of this paper are of general interest in understanding the control of rift structures during reactivation of distal-rifted margins.  相似文献   

10.
An extensive passive margin was formed in the Triassic along the periphery of Arabia, including the Tauric carbonate platform. This event is related to the opening of the Mesozoic Tethys when a number of microcontinents split off from Gondwana. Triassic extension and continental rifting resulted in the formation of a structural pattern which is uniform from the Dinarides to Oman. It includes the following elements:
1. (1) shelf,
2. (2) continental slope,
3. (3) deep basin probably with a floor of attenuated sialic crust,
4. (4) inner carbonate platform. In the Jurassic-Cretaceous stable conditions prevailed, influenced only by eustatic oscillations of the sea level. Turbidites accumulated on the continental rise while cherts and radiolarites were deposited in the deep basins (Hawasina, Pichakun, Antalya, Pindus) below the CCD level. Sedimentation on the shelf was controlled by north-northeast transverse tectonic elements which also continued across the passive margin, dividing it into a number of segments. Collision with an island arc led to obduction of the oceanic crust, deformation of the passive margin and overthrusting of its sedimentary cover onto the Arabian shelf. Obduction and deformation lasted for about 10 m.y. and created a new tectonic pattern with concentric structural zones surrounding the Arabian promontory.
These zones include:
1. (1) the flysch basin—a remnant of the closing Tethys;
2. (2) an uplift—a site of periodical emergence and erosion, corresponding to the frontal part of the ophiolitic nappes;
3. (3) the Border furrow—a depocenter of low-energy calcareous marls,
4. (4) the Arabian shield constantly emerged during the Tertiary. Tectonic deformation of these zones caused by the collision of Arabia with Eurasia began prior to the Early Miocene and it is still going on.
Data on Afghanistan demonstrate that its central part (the Gelmend-Argandab and Kabul blocks) belonged during the Paleozoic and Early Mesozoic to the continental shelf of India.  相似文献   

11.
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping  相似文献   

12.
The Pan-African (Neoproterozoic) low-grade ophiolitic fragment occurring to the south of Ataq City, Shabwah Province, southeastern central part of Yemen is positioned tectonically between the underlying Pre-Pan-African syntectonic granite infrastructure and the overlying Mesozoic–Cenozoic sedimentary successions. It is incomplete and differentiated in the field into (a) NW plunging nappes, namely a lower metagabbro nappe, and (b) the upper metavolcanic nappe. The sedimentary successions separated from each other by eastward dipping normal faults. These successions can be subdivided into three main rock units: Amran, Tawilah, and Hadramawt groups. The Amran Group is represented in the study area by Shuqra and Madbi formations. The Shuqra Formation consists mainly of highly fossiliferous carbonate facies yielding several terebratulids and rhynchonellids. It belongs to the Toracian–Oxfordian (or probably extend to Early Kimmeridgian) age. The Madbi Formation consists of sand–marl intercalations of Kimmeridgian–Early Tithonian age. The Tawilah Group is mainly composed of variegated unfossiliferous continental sandstones with few siltstone intercalations, and on the basis of its stratigraphic position, it is dated as Cretaceous (probably Early Cretaceous). The Hadramawt Group in the study area is represented by Umm er Radhuma Formation, which is widely distributed in the Arabian Gulf countries.  相似文献   

13.
In the Northern Emirates, Jurassic and Lower Cretaceous platform carbonates of the Musandam parautochthonous units are tectonically overlain by siliciclastic units of the Hawasina–Sumeini allochthon, which derive from the former paleo-slope domain and a more distal basinal portion of the Arabian margin of the Tethys, respectively. All these tectonic units display numerous evidences of paleo-fluid circulations, accounting for dolomitisation and recrystallisation of the rock matrix (Musandam Platform units), as well as cementation of fractures. Polymict breccias of Upper Cretaceous Ausaq Formation which underlay the sole thrust of the Hawasina–Sumeini allochthon also record episodes of hydraulic fracturing, whereas fluid inclusion data indicate precipitation at high temperature in relation to paleo-fluid flow. Petrography of thin-sections (conventional and cathodoluminescence microscopic techniques) as well as fluid inclusion and stable isotopes analyses, were combined with micro-tectonic studies. These analytical data document (1) the paragenetic sequence of diagenetic products for the Musandam Platform (which constitutes a carbonate reservoir analogue) and Sumeini units of the Dibba Zone, as well as (2) the nature of the paleo-fluids circulating along fractures and the sole thrust of the Hawasina–Sumeini allochthon. The main results of this petrographic approach are qualitative, evidencing (1) the rapid and vertical transfer of hot fluids in the vicinity of the former slope to platform transition, accounting for episodes of hydrothermal dolomitisation, as well as (2) early (i.e. pre-orogenic) and late (i.e. post-orogenic) episodes of emersion of the carbonate units, accounting for additional interactions with meteoric fluids and karstification. In order to better link these diagenetic events with the overall burial, thermal and kinematic evolution of the Arabian margin, basin modelling with Ceres2D, including fluid flow and pore-fluid pressure modelling, was subsequently performed along a regional transect (D4) located in the vicinity of the samples localities and cross-cutting the Northern Oman Mountains from Dibba in the east up to the Arabian Gulf in the west. New subsurface constraints provided by deep seismic profiles were used to constrain the architecture of the cross-section, and to test various hypotheses on the lateral and vertical connection, timing and hydrodynamic behaviour of the faults. This Ceres basin modelling also provides new quantitative estimates of the paleo-fluid pathways, of the timing and velocities of the fluid transfers and of the evolution of pore-fluid pressures. Ultimately, this integration of petrographic studies on surface samples and coupled kinematic and fluid flow basin modelling provides an updated scenario for the succession of tectonically controlled episodes of fluid rock interactions, namely dolomitisation and karstification recorded in the Mesozoic platform carbonates of the Northern Emirates.  相似文献   

14.
楚雄盆地位于云南省的中部 ,为一中生代的前陆盆地 ,其沉积可划分为前陆复理石和前陆磨拉石两个阶段。前陆复理石为一套半饥饿状态下的灰色 /深灰色薄层状粉砂质泥岩、泥质粉砂岩组合 ,夹泥灰岩 ,含有大量的有机质 ,为重要的烃源岩 ;前陆磨拉石为三角洲相—滨岸相的砂岩 ,为油气的储集砂体。盆地被渔泡江 三街推覆断裂切割成两部分∶西部为推覆体 ,东部为原形盆地。逆冲推覆体由根带、主逆冲带和逆冲传播前缘带三部分组成。逆冲作用始于中三叠世拉丁期 ,以前置的方式向扬子克拉通推覆 ,形成有断弯褶皱圈闭、断展褶皱圈闭、台阶状逆冲断层 岩性圈闭、基底折离圈闭和推覆带前缘传播消减带褶皱圈闭等多种类型。因而盆地逆冲带的演化对油气的聚集具有巨大的促进作用 ,因而在推覆体上寻找油气具有较好的潜力。  相似文献   

15.
On the basis of detailed geological mapping in the Talea Ori of Crete, metamorphic rocks previously interpreted as basement to the Plattenkalk Series are re-interpreted as down-faulted parts of the overlying Phyllite-Quartzite Series nappe. A supposed unconformity separating these two units is shown to be a high-angle fault. The Phyllite-Quartzite Series and overlying nappes were affected by two major deformational phases, whereas the Plattenkalk Series has a simpler structural history and was folded and imbricated by southwards-directed overthrusting which emplaced the Phyllite-Quartzite Series nappe and other overlying nappes in the Oligocene. We reject previous models of a huge inversion of the Plattenkalk Series and we also consider that considerable local inversion by tight to isoclinal folding and thrusting means that the stratigraphic thickness is much less than previously appreciated. The differences between the structural and sedimentological histories of the Plattenkalk Series and the overlying nappes implies that they were separated by a major crustal discontinuity, such as a transform or transcurrent fault, before the Oligocene overthrusting.  相似文献   

16.
塔里木盆地西南缘山前带逆冲推覆构造特征   总被引:14,自引:0,他引:14  
塔里木盆地西南缘山前带是西昆仑逆冲推覆构造在前陆形成的冲断带,主要由断层相关褶皱、双重构造、叠瓦状构造、三角带等构造组成。通过地表构造剖面、地震与非震资料的综合解释与研究,结合平衡剖面的正演方法,对该冲断带进行了几何学、运动学与动力学研究,对冲断带断层的扩展方式以及冲断时代进行了讨论。研究认为塔西南逆冲推覆构造具有"南北分带、东西分段以及垂向结构变异"的特点。自南向北分为逆冲推覆的根带、中带、锋带和反冲断裂带,由西向东可以划分为帕米尔弧形构造段、齐姆根弧形构造段、甫沙-克里阳三角带构造段与和田南逆冲推覆体构造段。冲断带在垂向结构上由三套区域性滑脱层划分为浅构造层次的外来系统断坡背斜、中构造层次的准原地系统双重构造、三角带构造以及深构造层次的原地系统弱变形带三层结构。冲断席内断层的扩展方式为前展式,而不同冲断席间则为后展式模式。冲断带自中新世中期开始形成,中新世末发生位移推覆,上新世—早更新世定型,中更新世—全新世隆升均衡调整。  相似文献   

17.
雪峰山大地构造的基本特征初探   总被引:18,自引:1,他引:17       下载免费PDF全文
陈海泓  徐树桐 《地质科学》1993,28(3):201-210
雪峰山具有碰撞型造山带的特征。造山作用发生在中生代。根据碰撞造山带的薄壳板块构造模式,可以划分出俯冲壳楔,仰冲壳楔与构造混杂岩三个基本单元。作为俯冲壳楔的杨子板块由前陆盆地与前陆褶冲带所表征,而作为仰冲壳楔的华南板块则以刚性基底推覆体与盖层推覆体所标示,以往称之为板溪群的岩石似应根据其构造特征划分为刚性基底推覆体(具 Smith 地层学意义)和陆壳碰撞作用形成的构造混杂带。  相似文献   

18.
点苍山新生代推覆构造的确立及其地质意义   总被引:2,自引:0,他引:2  
沙绍礼 《云南地质》2002,21(3):250-255
点苍山地处三江构造带东缘,其东侧扬子陆块上的古生代地层,越过洱海断裂推覆到苍山西坡的中、新生代地之上:下泥盆统青山组推覆至下白垩统景星组之上;上二叠叠统乌龙坝组及红岩子组推覆在始新统宝相寺组之上。三江构造带中的上三维统歪古村组及三合洞组推覆在上侏罗统坝注路组之上。推覆时期为始新世-上新世,推覆构造机制是陆内汇聚挤压所至。  相似文献   

19.
Remnants of the Liguria-Piemont Ocean with its Jurassic ophiolitic basement are preserved in the South Pennine thrust nappes of eastern Switzerland. Analysis of South Pennine stratigraphy and comparison with sequences from the adjacent continental margin units suggest that South Pennine nappes are relics of a transform fault system. This interpretation is based on three arguments: (1) In the highly dismembered ophiolite suite preserved, Middle to Late Jurassic pelagic sediments are found in stratigraphic contact not only with pillow basalts but also with serpentinites indicating the occurrence of serpentinite protrusions along fracture zones. (2) Ophiolite breccias (»ophicalcites«) occurring along distinct zones within peridotite-serpentinite host rocks are comparable with breccias from present-day oceanic fracture zones. They originated from a combination of tectonic and sedimentary processes: i.e. the fragmentation of oceanic basement on the seafloor and the filling of a network of neptunian dikes by pelagic sediment with locally superimposed hydrothermal activity and gravitational collapse. (3) The overlying Middle to Late Jurassic radiolarian chert contains repeated intercalations of massflow conglomerates mainly comprising components of oceanic basement but clasts of acidic basement rocks and oolitic limestone also exist. This indicates a close proximity between continental and oceanic basement. The rugged morphology manifested in the mass-flow deposits intercalated with the radiolarites is draped by pelagic sediments of Early Cretaceous age.  相似文献   

20.
盛源盆地西缘推覆构造特征及控矿作用   总被引:3,自引:0,他引:3  
沈俊 《铀矿地质》1994,10(3):156-160
本文论述了盛源盆地西缘带宝山冲断推覆构造的特征,研究了冲断体的几何结构、岩石变形、扩展方式、动力机制及其演化历程,并对推覆构造的控矿作用进行了详细的阐述它对石油、天然气、煤和铀矿床的勘查具有重要的实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号