首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In this paper, the relationship between seasonal mean (June, July, August and September) monsoon circulation features and the midlatitude circulations in winter and spring seasons have been examined during contrasting years of more (less) number of snow days in winter/spring followed by deficient (excess) Indian Summer Monsoon Rainfall (ISMR) using NCEP/NCAR reanalyzed data for the period 1966–1994. The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used to calculate the number of days of snow over west and east Eurasia separately under three classes: class 1 for SD>5cm, class 2 for SD>10cm and class 3 for SD>50cm where SD stands for snow depth. Correlation coefficients are computed between the anomaly in the number of days of snow depth under the above three classes during winter/spring over west and east Eurasia and the subsequent ISMR. HSDSD data show that difference in the number of days of SD>10cm in two extreme years is most prominent in the west Eurasia in the months of January and April. Also the anomaly in the number of days of snow in January and April over west Eurasia has correlation coefficients of –0.69 and –0.56 with the following ISMR, respectively at 0.1% significance level when the SD is more than 10cm at all the stations. Results also show that low-level atmospheric temperature difference between two extreme years of snow days in winter is up to 10°C and the cooling persists up to spring season with a difference of 2°C. This cooling persistence may give rise to anomalous cyclonic circulations over the midlatitudes and tropics which may be responsible for weakening the monsoon circulation over India during the year of more snow days over west Eurasia.  相似文献   

2.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

3.
Summary This paper reports on a small-scale pilot experiment held early in the dry season near Darwin, Australia, in which fine-scale observations of several prescribed fires were made using infrared digital video. Infrared imaging is used routinely to locate fires as infrared radiation suffers little attenuation as it propagates through the smoke that normally obscures visible imagery. However, until now, little use has been made of digital video imagery in analyzing the convective-scale structure of prescribed (or wild) fires. The advantage of digital video imagery is that the individual frames can be objectively analyzed to determine the convective motion in the plane viewed by the camera. The infrared imagery shows mostly rising plumes, much like convective clouds. The flow is highly convective, and the vertical transport of heat is confined to relatively narrow thermals. The updrafts range from a few ms–1 to around 15ms–1. A numerical model is used to simulate one of the prescribed fires at very high-resolution. For the most part, the model predictions compare well to the observations. The model produces plumes that are around 7m high, and spaced around 5m apart, which is similar to that observed. The model correctly predicts the mean rate of spread of the fire to be 1.3ms–1. Perhaps the most serious limitations to using infrared observations of the type presented here are the difficulties in interpreting precisely the relationship between the observed infrared temperature field and the air temperature calculated by the model, and the exact connection between the infrared camera derived flow field and that calculated by the model.  相似文献   

4.
Summary ¶Snow is a key feature of mountain environments in terms of the controls it exerts on hydrology, vegetation, and in terms of its economic significance (e.g. for the ski industry). Its quantification in a changing climate is thus important for various environmental and economic impact assessments. Based on observational analysis, surface energy balance modeling, and the latest data from high-resolution regional climate models, this paper investigates the possible changes in snow volume and seasonality in the Swiss Alps. An average warming of 4°C as projected for the period 2071–2100 with respect to current climate suggests that snow volume in the Alps may respond by reductions of at least 90% at altitudes close to 1000m, by 50% at 2000m, and 35% at 3000m. In addition, the duration of snow cover is sharply reduced in the warmer climate, with a termination of the season 50–60 days earlier at high elevations above 2000–2500m and 110–130 days earlier at medium elevation sites close to the 1000m altitude. The shortening of the snow season concerns more the end (spring) rather than the beginning (autumn), so that it should be expected that snow melt will intervene much earlier in the season than under current conditions. The results of this study are of relevance to the estimations of the impacts that the projected warming may have on the amount and timing of water in hydrological basins, on the start of the vegetation season, and on the financial status of many mountain resorts.  相似文献   

5.
Summary This study used monthly rainfall totals for the period 1961 to 1988 and pentad OLR values for the period 1974 to 1991 to study the structure and transition of active convention across the Congo Basin (10°S–5°N, 15°E–35°E) from the southern to the northern hemisphere summer. This involved the examination of map patterns and cross-sections of monthly rainfall and pentad OLR data.The results from the study indicated that there were two seasons observed over the Congo Basin; one is the wet season lasting from September to April and the other a dry season covering the rest of the year. The onset of the wet season takes place rapidly with active convection spreading very quickly to the south near latitude 20°S. This is due to the formation of the meridional (north–south) branch of the ITCZ over this region.This study has confirmed that the annual rainfall over the Congo Basin is reliable with the coefficient of variation of less than 30%. The wet seasons (e.g., SON and DJF) also show reliable rainfall occurrence but the dry season (e.g., JJA) has low reliability.The anomalously wet seasons are characterised by a relatively slow transition rate (1° latitude per pentad) of zones of active convection resulting in a late withdrawal of the rainy season while the dry seasons show a rapid transition rate with an early withdrawal of zones of active convection.High-rainfall months (>200mm) are concentrated within the Southern Hemisphere summer months. These high-rainfall months progress from the equator to the southern latitude following generally the movement of the overhead sun.The results further revealed that the years 1987/1984 had the lowest/highest mean OLR values over the Congo Basin within the period 1979 to 1991. The rates of transition of the zones of low OLR values were 0.9/5.0 degrees of latitude during 1987/1984, respectively.Received June 18, 2002; revised September 30, 2002; accepted November 21, 2002 Published online: June 12, 2003  相似文献   

6.
Summary The Earths local fair-weather electric field is significantly affected by small ions present in the atmosphere. These ions are typically smaller than 0.001µm and occur in concentrations from 500 to 600cm–3 in air. Attachment to larger aerosol particles may severely decrease the mobility of these atmospheric ions resulting in an increased local electric field. The number concentration of environmental aerosol particles in the size range 0.1 to 5.0µm was measured with two automatic laser scattering particle counters. The Earths electric field was monitored with an electric fieldmeter. Measurements were made in clean air and in an environment highly polluted by wood smoke. The electric field was found to be positively correlated to the aerosol number concentration. During one 24-hour period of measurement, the electric field increased from 180 to about 280Vm–1 as the number concentration of aerosols larger than 0.1µm increased from about 2000 to 9000cm–3. The number concentrations of aerosols larger than 0.1 and 0.3µm were both found to be positively correlated with the Earths electric field with correlation coefficients of 70% and 61%, respectively.Present address: School of Physical Sciences, Queensland University of Technology, Brisbane 4001, Australia.  相似文献   

7.
Summary The skill of the FSU Superensemble technique as applied to global numerical weather prediction is evaluated extensively in this paper. The global mass and motion fields for year 2000 and precipitation over the domain 55S to 55N for year 2001, as predicted by the Superensemble, the ensemble member models, and the mean of the ensemble members, are evaluated by standard statistical measures of skill to determine the performance of the Superensemble in relation to the other models. The member models are global forecast models from 5 of the worlds operational forecast centers in addition to the FSU global spectral model. For precipitation 5 additional versions of the FSU global model are utilized in the ensemble, as defined by different initial conditions provided by various physical initialization algorithms. Statistical parameters calculated for the mass and motion fields include root mean square (RMS) error, systematic error (or bias), and anomaly correlation. These are applied to the mean sea level pressure, 500hPa heights, and the wind fields at 850hPa and 200hPa. Statistical parameters that were calculated for precipitation include RMS error, correlation, equitable threat score (ETS), and a special definition of bias appropriate for the precipitation field. For the mass and motion fields the performance of the Superensemble was considered for the annual global case, as well as for each hemisphere (north and south) and for each of the four seasons. For precipitation only the annual case was considered over the domain cited above.For the mass and motion fields the RMS calculations showed the Superensemble to be superior (to have the smallest total forecast error) in all comparisons to the ensemble member models, and to be superior to the ensemble mean in the vast majority of comparisons. Performance in comparison to the other models was generally better in the Southern Hemisphere than in the Northern Hemisphere, and better in the transition seasons of fall and spring than in the extreme seasons of winter and summer. The Superensemble had the best success with mean sea level pressure, followed in order by 500hPa geopotential heights, 850hPa winds, and 200hPa winds.In the calculations of 500hPa geopotential height anomaly correlation the Superensemble had higher scores in all comparisons to the ensemble member models, as well as higher scores in the majority of comparisons to the ensemble mean. As with the RMS error results, the Superensemble performed better in the Southern Hemisphere than in the Northern Hemisphere, and better in fall than in summer, in comparison to the other models. The superior anomaly correlation scores of the Superensemble attest to the ability of the model to forecast daily perturbations from the climatological means, perturbations that are associated with transient synoptic scale features, given the horizontal resolution in the forecast models.In terms of systematic error reduction the Superensemble produces its most impressive results. Annual global mean sea-level pressure systematic errors for day 5 forecasts are generally in the range of ±1hPa (compared to errors as high as 8hPa in other models), and day 2 forecasts of 500hPa geopotential height produced systematic errors generally in the range of ±10 meters (compared to errors as high as 60 meters in other models). The Superensemble was able to reduce systematic errors in forecasts of a variety of important features in the global mass and motion fields: surface equatorial trough, wave amplitude in geopotential heights at 500hPa, trade winds and Somali Jet at 850hPa, mid-latitude westerlies, subtropical jet, and Tropical Easterly Jet (TEJ) at 200hPa.In terms of forecasting precipitation the Superensemble outperforms all ensemble member models and the ensemble mean in terms of RMS error, correlation coefficient, equitable threat score, and bias. The superior correlation scores indicate that the Superensemble is more reliable than the other models in predicting perturbations in the area distribution of precipitation, perturbations that are essentially associated with migrant synoptic scale disturbances, considering the horizontal resolution of the forecast models.The Superensemble is a valuable tool for significantly improving upon the global model forecasts of the worlds operational forecast centers. These forecasts are used daily as important guidance in making weather forecasts in all regions of the world. This paper will demonstrate that the Superensemble improves upon the ensemble member model forecasts: (1) in a statistical sense considering broad areas of the globe, (2) in a synoptic climatology sense through focus on the improved forecasts of climatological features seen in the global mass and motion fields, (3) in a synoptic sense through use of anomaly correlation and correlation coefficient where improvement is demonstrated in the forecasts of perturbations from mean fields which are essentially associated with transient synoptic scale disturbances.  相似文献   

8.
Summary The study on the characteristics of aerosol in Seoul during springtime from 1998 to 2003 is performed by the size-resolved number concentrations of aerosol. Asian dust events occur in spring most frequently, but it has been often observed in wintertime since 1999. Since 2000, the number of Asian dust days has been increasing, and the intensity has been more severe until 2002. However, there were only 3 dust days in Seoul during the spring of 2003, since the synoptic cyclone was relatively not intense enough to rise and transport dust to Korean peninsula, and the air stream was usually tiled to north of Korean peninsula. In addition, the precipitation was relatively plentiful and the air temperature was cold enough not to keep dry soil condition.Haze is the suspended particles in the air, reducing visibility by scattering light, and it is often a mixture of aerosols and photochemical smog. Dry particles with diameters of the order of 0.1µm, are small enough to scatter short wavelengths of light. Haze occurs well in winter and spring, and severe haze is observed in the afternoon. The occurrence frequency of haze has been decreasing since 2000 except in May of 2003.During Asian dust events from 1998 to 2003, the number concentration of aerosol with diameters from 0.3µm to 0.5µm decreases notably, but that larger than 1µm increases rapidly. On the other hand, for the haze events the number concentration from 0.3µm to 0.5µm increases notably, but that larger than 1µm decreases.  相似文献   

9.
Summary ¶The 0°C isotherm height, a parameter needed for the estimation of attenuation of microwave and millimetre wave for earth-space communication, has been estimated for different stations spread over India. The variations of 0°C isotherm height for different seasons over these stations are presented. Attenuations of radio wave due to rain at frequencies 10GHz and above have also been estimated for few stations using the 0°C isotherm height so derived. The results are useful for radio systems designers.  相似文献   

10.
Summary The relative strength of the stabilizing effect of buoyancy and the destabilizing effect of velocity shear in a stratified shear flow, such as a stable atmospheric boundary layer, is measured by the gradient Richardson number, Rig. The boundary layer static stability, as described by the buoyancy frequency, N, can be calculated from the virtual potential temperature gradient derived from RASS temperature profiles. The mean wind profiles from a sodar can be used to calculate the mean vertical velocity shear. In combination these profilers are potentially a powerful tool for the remotely sensing the dynamic stability of the boundary layer. However, experience shows that the combinations of two experimentally derived quantities, like N and shear, may give highly variable results. On the other hand, a simple sensitivity analysis shows that reasonable estimates of Rig are achievable over a range of conditions in the stable nocturnal boundary layer. To test this conclusion, high spatial and temporal resolution temperature and velocity soundings were obtained above 50m in the stable nocturnal boundary layer using a 920MHz continuous wave Radio Acoustic Sounding System (RASS) and 1.875kHz and 5.00kHz Doppler sodars. Examples of the evolution of Rig are presented from 24 hours of observations of the boundary layer in Canberra, on the tablelands in south- eastern Australia. Most of the boundary layer had Rig between 0.1 and 1. Thus, it was marginally dynamically stable, even with the gradient Richardson number calculated from finite differences over a vertical interval of 68m. A comparison of the results from the two sodars showed that the velocity shear increased significantly when the vertical differencing interval was decreased from 68m to 20m.  相似文献   

11.
Summary Regional climate model (RegCM2) and sulfur transport model (NJUADMS) were combined to simulate the distribution of anthropogenic sulfate aerosol burden over China, where a look up table method was applied to illustrate sulfate formation from SO2-oxidation. Direct radiative forcing of sulfate aerosol was further estimated using the scheme suggested by Charlson et al (1991). Investigations show that the annual average total sulfate column over mainland China is 2.01mg/m2 with high value in East and Central areas (more than 7mg/m2). The annual average direct radiative forcing of China is about –0.85W/m2. The forcing can reach –7W/m2 in Central and East China during the winter season. Total sulfate column shows significant seasonal variations with winter maximum-summer minimum in the Southern part of China and spring maximum-autumn minimum in the northern part of China. Strong seasonal cycles of direct radiative forcing are also found due to the influence of total sulfate column, cloud, relative humidity and the reflectivity of underlying surfaceReceived May 16, 2001; accepted August 5, 2002 Published online: May 8, 2003  相似文献   

12.
Summary The evolving modes of the sea-surface temperature (SST) in the Tropical Atlantic on the short interannual (IA) timescale were obtained by performing the extended empirical orthogonal function (EEOF) analyses on this variable separately for the 106-year (1871–1976) and 20-year (1881–1900; 1901–1920; 1921–1940; 1941–1960) periods. The equatorial and inter-hemispheric patterns manifest in the first EEOF mode of each analysis as part of the short IA evolution of the SST anomalies in the Tropical Atlantic. Another outstanding feature of the first EEOF mode of each analysis concerns the propagations of the SST anomalies in the meridional direction within the 20°N–20°S band and in the zonal direction in the sector 40°W–20°W. For all analyses, the SST anomalies propagate northward from the equator to 15°N and southward from 20°N to 15°N, with the same sign anomalies merging approximately at 15°N. On the other hand, the SST anomalies propagate westward in the sector 40°W–20°W with a propagation rate close to that of the phase speed of the fastest baroclinic Rossby wave in the ocean. So, the observed propagations of the SST anomalies in the 20°N–20°S band might result from the combined effect of the surface oceanic currents in this band and the baroclinic Rossby waves in the ocean.  相似文献   

13.
Summary ¶In order to better understand land-atmosphere interactions and increase the predictability of climate models, it is important to investigate the role of forest representation in climate modeling. Corresponding to the big-leaf model commonly employed in land surface schemes to represent the effects of a forest, a so called big-tree model, which uses multi-layer vegetation to represent the vertical canopy heterogeneity, was introduced and incorporated into the National Center for Atmospheric Research (NCAR) regional climate model RegCM2, to make the vegetation model more physically based. Using this augmented RegCM2 and station data for China during 1991 Meiyu season, we performed 10 experiments to investigate the effects of the application of the big-tree model on the summer monsoon climate.With the big-tree model incorporated into the regional climate model, some climate characteristics, e.g. the 3-month-mean surface temperature, circulation, and precipitation, are significantly and systematically changed over the model domain, and the change of the characteristics differs depending on the area. Due to the better representation of the shading effect in the big-tree model, the temperature of the lower layer atmosphere above the plant canopy is increased, which further influences the 850hPa temperature. In addition, there are significant decreases in the mean latent heat fluxes (within 20–30W/m2) in the three areas of the model domain.The application of the big-tree model influences not only the simulated climate of the forested area, but also that of the whole model domain, and its impact is greater on the lower atmosphere than on the upper atmosphere. The simulated rainfall and surface temperature deviate from the originally simulated result and are (or seem to be) closer to the observations, which implies that an appropriate representation of the big-tree model may improve the simulation of the summer monsoon climate.We also find that the simulated climate is sensitive to some big-tree parameter values and schemes, such as the shape, height, zero-plane displacement height and mixing-length scheme. The simulated local/grid differences may be very large although the simulated areal-average differences may be much lower. The area-average differences in the monthly-mean surface temperature and heat fluxes can amount to 0.5°C and 4W/m2, respectively, which correspond to maximum local/grid differences of 3.0°C and 40W/m2 respectively. It seems that the simulated climate is most sensitive to the parameter of the zero-plane displacement among the parameters studied.  相似文献   

14.
Trends of summer dry spells in China during the late twentieth century   总被引:5,自引:0,他引:5  
Summary In the present study the trends in frequency and duration of dry spells in six sub-regions of China were analyzed for the summer-half-year season (April–September) in period 1956–2000. A dry spell was defined as a number of consecutive days without measurable precipitation. For the frequency of short dry spells (length <10 days), significant changes are observed in the North, Northeast and Southwest China. For the frequency of long dry spells (length 10 days) there are significant trends in North and Northeast China; while no remarkable trends in frequency are found in other regions. There are also significant lengthening trends in dry spell duration in North and Northeast China, resulting mainly from the long-term changes in short dry spells. No significant change is observed for the maximum length in all regions. It is found that the temporal distribution of precipitation within the rainy season would notably impact the features of dry spells. An increase in the precipitation amount does not necessarily mean a synchronous reduction in dry spell frequency and/or duration. Seasonal mean anomalies of 500hPa heights in association with the long dry spells show similar spatial patterns over the middle to high latitudes for five of the six sub-regions (with exception of the case of Southwest China), resembling a west–east direction dipole in latitudes about 30°N northwards. For the case of Southwest China the dominant feature in 500hPa heights is the negative anomalies over most middle to high latitude Asia. Among these cases there are recognizable differences, particularly, in the tropical regions in western Pacific. That would provide useful information of circulation background for understanding the climate extremes.  相似文献   

15.
Summary The first GCM climate change projections to include dynamic vegetation and an interactive carbon cycle produced a very significant amplification of global warming over the 21st century. Under the IS92a business as usual emissions scenario CO2 concentrations reached about 980ppmv by 2100, which is about 280ppmv higher than when these feedbacks were ignored. The major contribution to the increased CO2 arose from reductions in soil carbon because global warming is assumed to accelerate respiration. However, there was also a lesser contribution from an alarming loss of the Amazonian rainforest. This paper describes the phenomenon of Amazonian forest dieback under elevated CO2 in the Hadley Centre climate-carbon cycle model.  相似文献   

16.
Summary The Tierras Bajas regions of eastern Santa Cruz, Bolivia have undergone among the most rapid rates of concentrated deforestation during the 1980s and 1990s. We investigate the sensitivity of local climate to these land cover changes as observed from Landsat images acquired between 1975 and 1999. The Simple Biosphere model (SiB2) is used to assess the effects of both morphological and physiological changes in vegetation and the implications for fluxes of water, energy and carbon between the vegetation and the atmosphere during the rainy season.Conversion from tropical forest to cropland implicates morphological changes in vegetation as the primary drivers for a daily maximum warming of about 2°C and a slight nighttime cooling, suggesting that clearing of tropical forests for agricultural use may increase the diurnal temperature range, mainly by increasing the maximum temperature. On the other hand, the conversion of wooded grassland to cropland resulted in a similar daily warming and drying but exclusively due to vegetation physiological activity.The area-averaged monthly mean response for each conversion type resulted in a warming of about 0.6°C for the conversion of broadleaf evergreen and 1.2°C for conversion of wooded grassland. These temperature differences represent an augmentation in the local heat source associated with a reduction in evapotranspiration due to land cover conversion and do not reflect variations forced by changes in atmospheric circulation.When averaged over the entire domain, the effect of landscape conversion results in a reduction of the latent heat flux and an increase in sensible heat flux, producing a large-scale apparent heat source of 0.5°C during January. This warming is in line with an increasing trend observed in monthly mean temperature in Santa Cruz, Bolivia during the same period.  相似文献   

17.
Summary A 1290MHz wind profiler (Radian Lap-3000), at present one of three operational wind profilers in Austria, is operated at Vienna airport. In spite of quality assurance procedures as consensus averaging included in the data evaluation process from profiler raw data, some spurious peaks of wind speed and unrealistic changes of the wind vector in time or height occur in the wind measurements. This is especially true for sampling intervals of only 5 minutes which are used to resolve the temporal evolution of summer thunderstorms and frontal passages. Averaging periods of only a few minutes are rather the lower limit apt for wind profiler observations and result in a low data availability of 28%, whereas about 55% of data (relative to the maximum height range according to the parameter setting) are available for 10 to 30 minutes profiles.Approaches to a posteriori quality control using checks for automatic error detection are proposed and tested on a one and a half year data-set: Flagging data when the three-dimensional wind divergence exceeds a predefined limit (0.5s–1) is in most cases successful in combination with thresholds for wind speed (2 times the median of the daily data-set) or wind shear (0.2s–1).The wind profiler data is compared to wind profiles from the next radiosonde station where soundings are launched 4 times a day at Hohe Warte, approx. 20km northwest, at the hill-side of the Viennese Woods. Deviations of about 1m s–1 in wind speed are found between the observations of the two systems. Differences between the wind profiles within the boundary layer can be explained by local differences in the wind regime observed at the airport and the radiosounding – blocking effects of the Viennese Woods during south-easterly flow. Comparing the profiler data to radiosoundings on a monthly basis gives a tool to monitor the profiler performance.  相似文献   

18.
Summary A simple parameterization for the estimation of turbulent kinetic energy (TKE) and momentum flux profiles under near-neutral stratification based on sodar measurements of the vertical velocity variance has been tested using data from the LINEX-2000 experiment. Measurements included operation of a phased-array Doppler sodar DSDPA.90 and of a sonic anemometer USA-1 mounted at a meteorological tower at a height of 90m. Good agreement has been found between the TKE and momentum flux values derived from the sonic and sodar data (with correlation coefficients r>0.90 and a slope of the regression lines of about 1.01.1) suggesting the possible use of sodar measurements of w 2 to derive turbulence parameter profiles above the tower range.  相似文献   

19.
Summary The increases in the erythemal UV exposures to horizontal planes and to inclined planes over three surfaces that are found in an urban environment (water, concrete and sand) due to the albedo of these surfaces have been estimated. For the cloud free case, the additional daily estimated UV exposures to a horizontal plane have a maximum value of 222 (Jm–2)ER, where the index after the unit is there to indicate that it refers to a biologically effective exposure. In comparison, the daily erythemal UV exposures over a year to a horizontal plane ranged from 425 to 8,321 (Jm–2)ER. For a vertical receiving plane that is rotating about a vertical axis, the additional erythemal daily UV exposures for the sub-tropical latitude location of this research for the ranges of solar azimuth angles encountered over the days in each season ranged from 16 to 311 (Jm–2)ER, 29 to 566 (Jm–2)ER and 46 to 905 (Jm–2)ER for water, concrete and sand respectively. The estimated error is ±20% and the calculations are based on clear-sky conditions. The additional erythemal UV averaged over each of the seasons was higher for the receiving plane inclined at 45° below the horizontal plane. In a similar fashion, the vertical surface has the higher additional erythemal UV exposures compared to the surfaces inclined at an angle above the horizontal.  相似文献   

20.
Summary This study assessed the climatic suitability for the expansion of Solenopsis invicta Buren (red imported fire ant) in Oklahoma under the present climate and with a doubling of atmospheric CO2 using three general circulation models (GCMs) (GFDL R30, OSU, UKMO). Oklahoma was chosen as the geographical focus because it has a dense network of meteorological stations and lies on the edge of the current biogeographic range of S. invicta. Meteorological data were spatially referenced with model data in GIS to produce a series of images of selected suitability indicators: (1) mean annual precipitation >510mm; (2) less than seven consecutive days with mean air temperature <1.1C; and (3) mean winter air temperature >9.4C. These indicator images were combined to produce suitability maps for the potential range of S. invicta. Under current climatic conditions, roughly three-quarters of Oklahoma is suitable for potential invasion by S. invicta. The GFDL R30, OSU, and UKMO show that the area suitable for colonization increases by approximately 26, 26, and 36%, respectively. In terms of actual land area, the increase with a warmer, wetter climate ranges from 35,300km2 to 47,600km2. The destructiveness of S. invicta on human livelihood necessitates a better understanding of the future expansion of the species for an uncertain future climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号