首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   

2.
Whole-rock major element chemical analyses of progressively metamorphosed impure carbonate rocks and pelitic schists, collected from the same metamorphic terrain, reveal similarities and differences in the chemical response of these rock types to the metamorphic event. Relative to a constant aluminum reference frame, both schist and carbonate exhibit no detectable change in their contents of Fe, Mg, Ti, Si, and Ca with change in metamorphic grade. Carbonate rocks become progressively depleted in K and Na with increasing grade of metamorphism, while schists exhibit no statistically significant change in their contents of K and Na. Both rock types become depleted in volatiles (principally CO2 and H2O) with increasing grade.Whole-rock chemical data permit two mechanisms for migration of K and Na from the carbonate rocks during metamorphism: (a) diffusion of alkalis from carbonate to adjacent schist; (b) transport of alkalis by through-flowing metamorphic fluid (infiltration). Mineral equilibria in schist and metacarbonate rock from the same outcrops allow calculation of the affinity for cation exchange between the two rock types during metamorphism. Measured affinities indicate that if mass transport of K and Na occurred by diffusion, chemical potential gradients would have driven the alkalis from schist into carbonate rock. Because diffusion cannot produce the observed chemical trends in the metacarbonates, K and Na are believed to have been removed during metamorphism by infiltration.The disparity in chemical behavior between the pelitic schists and metacarbonate rocks may be a result of enhanced fluid flow through the carbonates. The carbonate rocks may have acted as metamorphic aquifers; the greater flow of fluid through them would then have had a correspondingly greater effect on their whole-rock chemistry.  相似文献   

3.
FERRY  JOHN M. 《Journal of Petrology》1988,29(6):1121-1159
Mineral reactions at the biotite isograd were investigated inpelitic schists, micaceous sandstones, micaceous limestones,and metaigneous rocks from three stratigraphic units over anarea of 10000 km2 in north-central New England. The biotiteisograd in north-central New England represents a metamorphicdecarbonation front that affected all major rock types in eachstratigraphic unit. Pressure at the isograd was near 3500 bat the northern end of the study area and near 5500 b in thesouth. Temperature was in the range 400–450?C. Equilibriummetamorphic fluids were approximately CO2-H2O mixtures withXCO2=0?04–0?07. Volumetric fluid]-rock ratios were calculatedfor more than 70 samples of all major rock types from each formationusing measured progress of the prograde reactions and the estimatedP-T-XCO2, conditions of metamorphism. Regardless of stratigraphicunit, limestones record low values of 0–0?2, pelites andmetaigneous rocks generally record high values of 1–3,and standstones record intermediate values of 0?2–1. With exception of the limestones, all samples from the biotitezone record fluid-rock ratios significantly greater than likelyrock porosity during metamorphism. The prograde decarbonationreactions therefore were driven by infiltration of rock by reactiveaqueous fluids. The observed correlations between fluid-rockratio and rock type indicate that significant permeability contrastsoccurred during low-grade metamorphsim with permeability increasingin the order: limestones<sandstones<pelites rocks. Asa corollary, reactive fluid flow must have been channelizedwith enhanced flow in pelites and metaigneous rocks relativeto sandstones and limestones. Results of this study in north-centralNew England taken together with studies of the biotite isogradin south-central Maine (Ferry, 1984, 1986a, 1988) demonstratethat low-grade metamorphism over much of the northern Appalachianorogen was infiltration-driven.  相似文献   

4.
Orthopyroxene and olivine exposed along the rim of a harzburgite xenolith from La Palma (Canary Islands) show polycrystalline selvages and diffusion zones that result from contact with mafic, alkaline, silica-undersaturated melts during at least 10-100 years before eruption. The zoned selvages consist of a fine-grained reaction rim towards the xenolith and a coarser grained, cumulate-like layer towards the melt contact. The diffusion zones are characterized by decreasing magnesium number from about 89-91 in the xenolith interior to 79-85 at the rims, and clearly result from Fe-Mg exchange with surrounding mafic melt. The width of the diffusion zones is 80-200 µm in orthopyroxene and 1,020-1,730 µm in olivine. Orthopyroxene also shows decreasing Al2O3 and Cr2O3 and increasing MnO and TiO2 towards the reaction rims. Textural relations and comparisons with dissolution experiments suggest that orthopyroxene dissolution by silica-undersaturated melt essentially ceased after days to weeks of melt contact, possibly because of decreasing temperature and formation of the reaction rims. The short dissolution phase was followed by prolonged growth of diffusion zones through cation exchange between xenolith minerals and melt across the reaction rims, and by the growth of cumulus crystals. The observations indicate that orthopyroxene xenocrysts and harzburgite xenoliths can survive in mafic, silica-undersaturated, subliquidus magmas at 1,050-1,200 °C and 200-800 MPa for tens of years. Modeling and comparison of the diffusion zones indicate that the average Fe-Mg interdiffusion coefficient DFeMg in orthopyroxene is 2 log units lower than that in olivine; at 1,130 °C and QFM-buffered oxygen fugacity, DFeMgopx = 3 ×10 - 19  m2  s- 1D_{FeMg}^{opx} = 3 \times 10^{ - 19} \,{\rm m}^2 \,{\rm s}^{{\rm - 1}} . The new data overlap well with recently published data for DFeMg in diopside, and indicate that DFeMg opxD_{FeMg\,}^{opx} (as predicted by previous authors) may be extrapolated to higher temperatures and oxygen fugacities. It is suggested that DFeMg opx D_{FeMg\,}^{opx} and DFeMg in Mn-poor ferromagnesian garnet are similar within 0.5 log units at temperatures between 1,050 and 1,200 °C.  相似文献   

5.
Abstract The Siluro-Devonian Waits River Formation of north-east Vermont was deformed, intruded by plutons and regionally metamorphosed during the Devonian Acadian Orogeny. Five metamorphic zones were mapped based on the mineralogy of carbonate rocks. From low to high grade, these are: (1) ankerite-albite, (2) ankerite-oligoclase, (3) biotite, (4) amphibole and (5) diopside zones. Pressure was near 4.5kbar and temperature varied from c. 450° C in the ankerite-albite zone to c. 525° C in the diopside zone. Fluid composition for all metamorphic zones was estimated from mineral equilibria. Average calculated χco2[= CO2/(CO2+ H2O)] of fluid in equilibrium with the marls increases with increasing grade from 0.05 in the ankerite-oligoclase zone, to 0.25 in the biotite zone and to 0.44 in the amphibole zone. In the diopside zone, χCO2 decreases to 0.06. Model prograde metamorphic reactions were derived from measured modes, mineral chemistry, and whole-rock chemistry. Prograde reactions involved decarbonation with an evolved volatile mixture of χCO2 > 0.50. The χCO2 of fluid in equilibrium with rocks from all zones, however, was generally <0.40. This difference attests to the infiltration of a reactive H2O-rich fluid during metamorphism. Metamorphosed carbonate rocks from the formation suggests that both heat flow and pervasive infiltration of a reactive H2O-rich fluid drove mineral reactions during metamorphism. Average time-integrated volume fluxes (cm3 fluid/cm2 rock), calculated from the standard equation for coupled fluid flow and reaction in porous media, are (1) ankerite-oligoclase zone: c. 1 × 104; (2) biotite zone: c. 3 × 104; (3) amphibole zone: c. 10 × 104; and diopside zone: c. 60 × 104. The increase in calculated flux with increasing grade is at least in part the result of internal production of volatiles from prograde reactions in pelitic schists and metacarbonate rocks within the Waits River Formation. The mapped pattern of time-integrated fluxes indicates that the Strafford-Willoughby Arch and the numerous igneous intrusions in the field area focused fluid flow during metamorphism. Many rock specimens in the diopside zone experienced extreme alkali depletion and also record low χCO2. Metamorphic fluids in equilibrium with diopside zone rocks may therefore represent a mixture of acid, H2O-rich fluids given off by the crystallizing magmas, and CO2-H2O fluids produced by devolatilization reactions in the host marls. Higher fluxes and different fluid compositions recorded near the plutons suggest that pluton-driven hydrothermal cells were local highs in the larger regional metamorphic hydrothermal system.  相似文献   

6.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   

7.
Abstract. Pink piemontite-spessartine-bearing and grey-green spessartine-bearing manganiferous quartzose schists derived from siliceous pelagites, and green quartzofeldspathic schists, are described from the greenschist facies of the Haast Schist terrane, near Arrow Junction, western Otago. Electron microprobe data are reported for sphene, spessartine-rich garnet, manganoan epidote, piemontite, tourmaline, phengitic muscovite, chlorite, albite, haematite, rutile, manganoan calcite and chalcopyrite. Metamorphism occurred at about 6.4kbar, 400°C. Xco2 was above the quartz-rutile-calcite-sphene buffer (Xco2± 0.02) throughout the recorded metamorphic history of the piemontite schists. It dropped from above to below this critical buffering value in a spessartine-rich schist and it was close to or below the buffering value in the quartzofeldspathic schists. Production of piemontite required high fO2, believed to be inherited from MnOx in the parent pelagite. Substantial loss of O2 (e.g. minimum of 0.19% by weight in one rock) during diagenesis and/or metamorphism is inferred. In the grey-green schists this inhibited piemontite formation. Slight loss of O2 and Ca2+ accompanied minor late-stage replacement of piemontite by second generation spessartine. Observed zoning and mineral replacements indicate rise of temperature, drop in pressure, or invasion by solutions of lower fO2 and XCO2 equilibrated with surrounding schists. The detailed chemistry of the minerals studied correlates with available Mn and with bulk-rock (Fe3+ x 100)/(Fe2++ Fe3+). The oxidation ratio ranges from 24 in average green quartzofeldspathic schist, through 78 in average grey-green manganiferous quartzose schist, to almost 100 in some piemontite-bearing schists. As Fe2+ gives way to Fe3+, Mg/Fe ratios tend to rise in chlorite, phengite, tourmaline, spessartine, and calcite, Mn increases and Ti decreases in haematite, Mn increases in spessartine and calcite, and Fe increases in rutile. Available divalent cations are depleted relative to Al; chlorite is more aluminous, and phengite more paragonitic than in typical Haast schists.  相似文献   

8.
Eclogites from the Onodani area in the Sambagawa metamorphic belt of central Shikoku occur as layers or lenticular bodies within basic schists. These eclogites experienced three different metamorphic episodes during multiple burial and exhumation cycles. The early prograde stage of the first metamorphic event is recorded by relict eclogite facies inclusions within garnet cores (XSps 0.80–0.24, XAlm 0–0.47). These inclusions consist of relatively almandine‐rich garnet (XSps 0.13–0.24, XAlm 0.36–0.45), aegirine‐augite/omphacite (XJd 0.08–0.28), epidote, amphiboles (e.g. actinolite, winchite, barroisite and taramite), albite, phengite, chlorite, calcite, titanite, hematite and quartz. The garnet cores also contain polyphase inclusions consisting of almandine‐rich garnet, omphacite (XJd 0.27–0.28), amphiboles (e.g. actinolite, winchite, barroisite, taramite and katophorite) and phengite. The peak P–T conditions of the first eclogite facies metamorphism are estimated to be 530–590 °C and 19–21 kbar succeeded by retrogression into greenschist facies. The second prograde metamorphism began at greenschist facies conditions. The peak metamorphic conditions are defined by schistosity‐forming omphacites (XJd ≤ 49) and garnet rims containing inclusions of barroisitic amphibole, phengite, rutile and quartz. The estimated peak metamorphic conditions are 630–680 °C and 20–22 kbar followed by a clockwise retrograde P–T path with nearly isothermal decompression to 8–12 kbar. In veins cross‐cutting the eclogite schistosity, resorbed barroisite/Mg‐katophorite occurs as inclusions in glaucophane which is zoned to barroisite, suggesting a prograde metamorphism of the third metamorphic event. The peak P–T conditions of this metamorphic event are estimated to be 540–600 °C and 6.5–8 kbar. These metamorphic conditions are correlated with those of the surrounding non‐eclogitic Sambagawa schists. The Onodani eclogites were formed by subduction of an oceanic plate, and metamorphism occurred beneath an accretionary prism. These high‐P/T type metamorphic events took place in a very short time span between 100 and 90 Ma. Plate reconstructions indicate highly oblique subduction of the Izanagi plate beneath the Eurasian continent at a high spreading rate. This probably resulted in multiple burial and exhumation movements of eclogite bodies, causing plural metamorphic events. The eclogite body was juxtaposed with non‐eclogitic Sambagawa schists at glaucophane stability field conditions. The amalgamated metamorphic sequence including the Onodani eclogites were exhumed to shallow crustal/surface levels in early Eocene times (c. 50 Ma).  相似文献   

9.
Unaltered metasediments of the Mary Kathleen Fold Belt are composed predominantly of layered amphibolite-facies scapolitic calc-silicate rocks in which minimal infiltration of externally derived fluids occurred during regional metamorphism. There were substantial differences in volatile activities between different layers in the layered sequences, in particular: a CO2/a H 2 O inferred from reaction progress estimates and analysis of biotite-clinopyroxene-fluid phase relations; a NaCl/a H 2 O inferred from scapolite compositions; and a HCl/a H 2 O inferred from biotite compositions. In one outcrop in which a clinopyroxene-producing reaction dominated, differences in approximate X CO 2of up to 0.25 occurred between several samples collected over 50 metres. Variations in a H 2 O/a HCl of up to one order of magnitude are inferred at 1 to 50 m scales from biotite-Cl contents, and variations in NaCl contents of scapolite from 0.0 to up to 0.6 Cl atoms in the Cl–CO3–SO4 site reflect a large variation of a NaCl in the coexisting fluid at similar scales. Most calcsilicate layers internally buffered fluid compositions in the H2O–CO2–NaCl–HCl system. Local occurrences of NaCl-rich scapolite suggest that some layers may have been in equilibrium with halite during early prograde metamorphism. At peak metamorphic temperatures, disolution of halite was complete but layers containing high-NaCl scapolite continued to buffer fluid at high values of a NaCl. Fluid immiscibility does not appear to have affected the progress of the devolatilization reactions. Although fluid was predominantly internally buffered, moderate quantities of fluid were released by prograde mineral reactions in many layers, up to 30 cm3 fluid per 100 cm3 rock. Numerous episodes of fluid escape were required, probably via microfractures, such that the released fluid did not obviously influence reaction progress in the layers through which it passed. The anomaly of beautifully preserved internal buffering signatures and the requirement for produced fluid locally to pass across layers in a deforming rock sequence suggest that the escaping fluid did not leave any readily observable tracks. This is explained by rapid rates of fracture propogation and fluid migration therein. This internally buffered system contrasts strongly with adjacent calc-silicate rocks that show evidence for infiltration of externally derived fluids at high fluid/rock ratios, and highlights the broad range of fluid behaviour that can be expected in deforming, heterogeneous rock sequences.  相似文献   

10.
The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte–Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint.With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.  相似文献   

11.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

12.
Tourmaline is the principal repository of boron in crustal rocks and therefore useful for tracing B-cycling during prograde dehydration and retrogression of supracrustal rocks. Here, we use the major-trace element, and B isotope composition of tourmaline from schists, quartzites, and tourmaline-quartz veins of the Gangpur Schist Belt in eastern India to constrain the source of boron and the physicochemical evolution of B-rich fluids during prograde dehydration metamorphism. Tourmaline growth and re-equilibration in rocks of the Gangpur Schist Belt was a multi-stage process involving several fluid sources. The δ11B varies between ?6‰ and ?18‰, indicating a dominantly continental source for boron. Tourmaline in schists, quartzites, and tourmaline-quartz veins grew over a wide range of P-T conditions and record multiple episodes of metamorphic dehydration between ca. 1.6 Ga and ca. 0.95Ga. The tourmaline in tourmaline-quartz veins and quartzites has lighter B-isotope composition, typical of continental detritus, while those in the schists and quartzites record pelite-dehydration signature with values decreasing gradually from ca. ?12‰ in the cores to ca. ?17‰ in the rims. Heavier isotopic compositions (δ11B of ca. ?6‰) measured in some grains in the pelites and quartzites indicate boron contribution from meta?carbonate sources. The mixing of a heavier B-rich metacarbonate-derived fluid with pelite-derived metamorphic fluids could explain the lower B-isotope values in such tourmaline. The study also attempts to constrain the controls on the intake of trace elements in tourmaline. The results suggest that the partitioning of Mn, Y, V, Co and Ti in tourmaline is affected by the growth of porphyroblast phases such as garnet, staurolite, and biotite, while Li, Sr, Zn and Sn reflect the signature of the metamorphic fluid.  相似文献   

13.
Metamorphic isograds and time-integrated fluid fluxes were mappedover the 1500 km2 exposure of the Waits River Formation, easternVermont, south of latitude 4430'N. Isograds based on the appearanceof oligoclase, biotite, and amphibole in metacarbonate rocksdefine elongated metamorphic highs centered on the axes of twolarge antiforms. The highest-grade isograd based on the appearanceof diopside is closely associated spatially with synmetamorphicgranitic plutons. Pressure, calculated from mineral equilibria,was fairly uniform in the area, 7 1.5 kb; calculated temperatureincreases from {small tilde} 480C at the lowest grades in thearea to {small tilde} 575C in the diopside zone. CalculatedXco2f equilibrium metamorphic fluid increases from <0-03at the lowest grades to 0.2 in the amphibole zone and decreasesto 0.07 in the diopside zone. Time-integrated fluid fluxesincrease with increasing metamorphic grade, with the followingmean values for each metamorphic zone (in cm3/cm2): ankerite-oligoclasezone, 1 x 104; biotite zone, 7 x 104; amphibole zone, 2 x 105;diopside zone, 7 x 105. The mapped pattern of time-integrated fluxes delineates twolarge deep-seated ({small tilde} 25-km depth) regional metamorphichydrothermal systems, each centered on one of the major antiforms.Fluid flowed subhorizontally perpendicular to the axis of theantiforms from their low-temperature flanks to their hot axialregions and drove prograde decarbonation reactions as they went.Along the axes of the antiforms fluid flow was further focusedaround synmetamorphic granitic intrusions. In the hot axialregion fluid changed direction and flowed subvertically outof the metamorphic terrane, precipitating quartz veins. Estimatesof the total recharge, based on progress of prograde decarbonationreactions, nearly match estimates of the total discharge, basedon measured quartz vein abundance, (2-10) x 1012 cm3 fluid percm system measured parallel to the axes of the antiforms. Withinthe axial regions fluids had lower XCO2 and rocks record greatertime-integrated fluxes close to the intrusions than at positionsmore than {small tilde} 5 km from them. The differences in bothfluid composition and time-integrated flux can be explainedby mixing close to the intrusions of regional metamorphic fluidsof XCO2/ with fluids from another source with XCO2{small tilde}0 in the approximate volume ratio of 1:2.  相似文献   

14.
ABSTRACT

Stable isotopes combined with pre-existing 40Ar/39Ar thermochronology at the Gavilan Hills and Orocopia Mountains in southeastern California record two stages of fluid–rock interaction: (1) Stage 1 is related to prograde metamorphism as Orocopia Schist was accreted to the base of the crust during late Cretaceous–early Cenozoic Laramide flat subduction. (2) Stage 2 affected the Orocopia Schist and is related to middle Cenozoic exhumation along detachment faults. There is no local evidence that schist-derived fluids infiltrated structurally overlying continental rocks. Mineral δ18O values from Orocopia Schist in the lower plate of the Chocolate Mountains fault and Gatuna normal fault in the Gavilan Hills are in equilibrium at 490–580°C with metamorphic water (δ18O = 7–11‰). Phengite and biotite δD values from the Orocopia Schist and upper plate suggest metamorphic fluids (δD ~ –40‰). In contrast, final exhumation of the schist along the Orocopia Mountains detachment fault (OMDF) in the Orocopia Mountains was associated with alteration of prograde biotite and amphibole to chlorite (T ~ 350–400°C) and the influx of meteoric-hydrothermal fluids at 24–20 Ma. Phengites from a thin mylonite zone at the top of the Orocopia Schist and alteration chlorites have the lowest fluid δD values, suggesting that these faults were an enhanced zone of meteoric fluid (δD < –70‰) circulation. Variable δD values in Orocopia Schist from structurally lower chlorite and biotite zones indicate a lesser degree of interaction with meteoric-hydrothermal fluids. High fluid δ18O values (6–12‰) indicate low water–rock ratios for the OMDF. A steep thermal gradient developed across the OMDF at the onset of middle Cenozoic slip likely drove a more vigorous hydrothermal system within the Orocopia Mountains relative to the equivalent age Gatuna fault in the Gavilan Hills.  相似文献   

15.
WATERS  D. J. 《Journal of Petrology》1986,27(2):541-565
Sapphirine occurs with cordierite, phlogopite, spinel, sillimanite,corundum, orthopyroxene, and gedrite in granulite facies Mg-and Al-rich paragneisses within the low P, high T NamaqualandMetamorphic Complex. The gneisses reveal a three-stage texturalhistory. Sapphirine appeared during a second stage of progrademineral growth which produced nodular structures and intergrowthsinvolving spinel, corundum, and sillimanite, pseudomorphingan earlier generation of coarse, amphibolite facies minerals.A third generation of coarse, cross-cutting, mainly hydrousminerals (gedrite, kornerupine, phlogopite) is sporadicallydeveloped. The wide variety of cofacial mineral assemblages allows thedelineation of the stable mineral associations of sapphirinein the system K2O-MgO-FeO-Al2O3-SiO2-H2O under P-T conditionsindependently estimated at about 5 kb, 750–800 °C.The natural assemblages provide constraints which, taken togetherwith existing thermodynamic and experimental data, allow theestimation of P-T slopes of sapphirine equilibria. The mineraltextures thus indicate sapphirine growth under increasing T,decreasing a(H2O), and constant or slightly increasing P. The preservation of prograde reaction textures during fine-grainedmineral growth probably results from the reduced importanceand/or more CO2-rich composition of the metamorphic fluid undergranulite facies conditions in these refractory rocks. Aqueousfluids were locally reintroduced after the metamorphic peak.  相似文献   

16.
The assemblage hornblende+white mica occurs in graphite-free schists at two localities in the southwest corner of the Tauern Window, Eastern Alps. In interbedded graphitic layers (1 mm to 1 m thick), however, hornblende is typically replaced by pseudomorphs of biotite+plagioclase +epidote±chlorite+staurolite in the presence of white mica. Garnets adjacent to these pseudomorphs have pronounced growth discontinuities near their rims, in contrast to the continuously zoned garnets in nongraphitic layers. These observations imply that reactions of the type hbl+white micagar+bio+plag+epid±chl±staur +H2O occurred in the graphitic samples, but that hbl+white mica remained stable in graphite-free layers.Calculation of the equilibrium constants for solid phases in five dehydration equilibria at locality 1 indicates thata(H2O) in the nongraphitic layers was 6 to 11 times greater thana(H2O) in the graphitic layers. Similar calculations involving six dehydration equilibria at locality 2 show no difference ina(H2O) between layers at the conditions of final equilibration. Initial differences in fluid composition maintained between the graphitic and nongraphitic layers caused the hbl+white mica reaction to occur at differentP-T conditions in different horizons of the schists.These data indicate that systematic differences in fluid composition were generated during metamorphism of the interlayered graphitic and non-graphitic schists but were subsequently homogenized at locality 2. The heterogeneities could initially have been produced while the rocks were in theP-T field of CO2-H2O immiscibility. Development of a penetrative, layer-parallel shear foliation at this time would have prevented subsequent mixing of the fluids across layers after temperatures exceeded the consolute temperature in the CO2-H2O system. Late-stage homogenization of fluids at locality 2 is thought to reflect loss of the buffer capacity of the mineral assemblage in response to total consumption of hornblende.  相似文献   

17.
The Mogok metamorphic belt of Palaeogene age, which records subduction‐ and collision‐related events between the Indian and Eurasian plates, lies along the western margin of the Shan plateau in central Myanmar and continues northwards to the eastern Himalayan syntaxis. Reaction textures of clinohumite‐ and scapolite‐bearing assemblages in Mogok granulite facies metacarbonate rocks provide insights into the drastic change in fluid composition during exhumation of the collision zone. Characteristic high‐grade assemblages of marble and calcsilicate rock are clinohumite+forsterite+spinel+phlogopite+pargasite/edenite+calcite+dolomite, and scapolite+diopside+anorthite+quartz+calcite respectively. Calculated petrogenetic grids in CaO–MgO–Al2O3–SiO2–H2O–CO2 and subsets of this system were employed to deduce the pressure–temperature–fluid evolution of the clinohumite‐ and scapolite‐bearing assemblages. These assemblages suggest higher temperature (>780–810°C) and [=CO2/(CO2+H2O) >0.17–0.60] values in the metamorphic fluid for the peak granulite facies stage, assuming a pressure of 0.8 GPa. Calcite grains commonly show exsolution textures with dolomite particles, and their reintegrated compositions yield temperatures of 720–880°C. Retrograde reactions are mainly characterized by a reaction zone consisting of a dolomite layer and a symplectitic aggregate of tremolite and dolomite grown between clinohumite and calcite in marble, and a replacement texture of scapolite by clinozoisite in calcsilicate rock. These textures indicate that the retrograde reactions developed under lower temperature (<620°C) and (<0.08–0.16) conditions, assuming a pressure of 0.5 GPa. The metacarbonate rocks share metamorphic temperatures similar to the Mogok paragneiss at the peak granulite facies stage. The values of the metacarbonate rock at peak metamorphic stage are, however, distinctly higher than those previously deduced from carbonate mineral‐free paragneiss. Primary clinohumite, phlogopite and pargasite/edenite in marble have F‐rich compositions, and scapolite in calcsilicate rock contains Cl, suggesting a contrast in the halogen compositions of the metamorphic fluids between these two lithologies. The metamorphic fluid compositions were probably buffered within each lithology, and the effective migration of metamorphic fluid, which would have extensively changed the fluid compositions, did not occur during the prograde granulite facies stage throughout the Mogok metamorphic belt. The lower conditions of the Mogok metacarbonate rocks during the retrograde stage distinctly contrast with higher conditions recorded in metacarbonate rocks from other metamorphic belts of granulite facies. The characteristic low conditions were probably due to far‐ranging infiltration of H2O‐dominant fluid throughout the middle segment of the Mogok metamorphic belt under low‐amphibolite facies conditions during the exhumation and hydration stage.  相似文献   

18.
The Dublin Gulch intrusion is a member of the Tombstone plutonic suite, a linear belt of middle Cretaceous intrusions that extend across the Yukon Territory. Like many of the intrusions in this suite, the Dublin Gulch intrusion is associated with several different zones of gold and tungsten mineralization, within and immediately adjacent to the intrusion. The Eagle zone (50.3 Mt @ 0.93 g/t gold), located in the southwestern part of the Dublin Gulch intrusion, hosts the most significant concentration of gold in the area. The gold occurs in a broadly east-west-striking, steeply south-dipping series of sheeted veins. The veins consist of early quartz-scheelite-pyrrhotite-pyrite-arsenopyrite, and are associated with K-feldspar-albite alteration envelopes. These grade out to and are overprinted by sericite-carbonate-chlorite alteration. The same assemblage also occurs in veinlets that refracture sheeted quartz veins and contain the majority of the gold. The gold occurs with molybdenite, lead-bismuth-antimony sulfosalts, galena, and bismuthinite. Gold correlates strongly with bismuth (r2=0.9), a relationship common to several intrusion-related gold deposits, but has a poor correlation with all other elements. Tungsten and molybdenum have a weak inter-element correlation (r2=0.55) and paragenetically pre-date the majority of gold precipitation. Lead, zinc, copper, silver, antimony, and arsenic have moderate to strong inter-element correlations (0.58 to 0.93). The change from tungsten-bearing mineralization through to gold-bismuth-rich ores with elevated syn- to post-ore lead, zinc, copper, silver, antimony, and arsenic can be grossly correlated with a change in hydrothermal fluid composition. Early scheelite-bearing quartz contains primary CO2-rich fluid inclusions, which are post-dated by secondary inclusions with higher salinities (up to 15 wt% NaCl equiv.) and less CO2. These latter inclusions are interpreted to coincide with the later gold-bismuth and base metal mineralization. The favored genetic model is one in which early CO2-rich fluids exsolved from a magma with an initially high CO2 content, but progressively became more saline and H2O-rich as the system evolved.  相似文献   

19.
The molar volume of mixtures of CO2 and H2O is a strong function of the fluid composition. Both CO2 and H2O participate in the metamorphism of carbonate rocks, resulting in a change in the fluid composition during reaction. One of the effects of the change in composition is the increase in pore-fluid pressure with only small increases in extent of reaction, ;. Pressure calculated from the volumetric properties of CO2-H2O mixtures at 400 °C increases greatly with small increases of ; but drops at greater values because of the increase in pore volume as a result of (Vsolid. The pore pressure increase at small values of ;, though, readily exceeds the reported tensile strength of carbonate rocks, and the rock cannot sustain significant reaction without fracturing. The result of a small amount of reaction is a fractured rock with increased permeability, which promotes fluid transport.  相似文献   

20.
The Marymia gold deposit, comprising two orebodies, Keillor 1 and Keillor 2, is at the northern end of the Plutonic Well greenstone belt in the Marymia Inlier, in the southern Capricorn Orogen, just north of the Yilgarn craton. The Marymia Inlier is a discrete fault-bounded Archean gneiss-granitoid-greenstone domain surrounded by sedimentary basins that were formed and variably metamorphosed and deformed during several Palaeoproterozoic orogenic cycles. The greenstone sequence at Marymia is stratigraphically and geochemically similar to greenstone sequences in the Yilgarn craton, but was subjected to further deformation and metamorphism in the Palaeoproterozoic. Late Archean deformation (D1-D2) was ductile to brittle-ductile in style, whereas Palaeoproterozoic deformation was predominantly brittle. Equilibrium mineral assemblages indicate that peak amphibolite-facies metamorphism (540-575 °C, <3 kb) was overprinted by greenschist-facies metamorphism (300-360 °C). Petrographic textures indicate that prograde metamorphism was coeval with D1-D2, with peak metamorphism early to syn D2. Gold mineralisation at Marymia is hosted in metamorphosed tholeiitic basalts and banded iron formation. On a gross scale, the distribution of gold is controlled by D2 folds and shear zones. Lithological contacts with strong rheological or chemical contrasts provide local controls. Gold-related alteration comprises subtle millimetre- to centimetre-wide zones of silicification with variable amounts of quartz, hornblende, biotite, K-feldspar, plagioclase, calcite/siderite, scheelite, titanite, epidote, sulfide and telluride minerals. Quartz veins are generally narrow and discontinuous with low total volume of quartz. Gold is sited in the wall rock, at vein salvedges or within stringers of wall rock within veins. There are two distinct opaque-mineral assemblages: pyrite-pyrrhotite-chalcopyrite-galena and hessite-petzite-altaite-Bi-telluride-galena. Ore samples are variably enriched in Ag, Te, Pb, W, Cu, S and Fe reflecting heterogeneity of the ore mineralogy. Structural timing and temperature of formation of alteration and ore minerals support deposition of gold during late peak amphibolite-facies metamorphism from neutral to alkaline (pH=5-6), moderately oxidising (log PO2,-21-22) and CO2-bearing (XCO2 Ƹ.2) fluids. The total sulfur content of the fluid is estimated at 1mDS. Lead isotope compositions support derivation of lead from within the local greenstone sequence. Gold lodes were deformed by faults and shear zones in the Palaeoproterozoic, with only limited remobilisation. Subeconomic, carbonate vein- and breccia-hosted base metal mineralisation is locally hosted within Palaeoproterozoic fault zones, which clearly cut gold lodes. Base-metal-related alteration is characterised by intense carbonatisation, chloritisation, and albitisation of the mafic host rocks. Mineral assemblages are consistent with formation at greenschist facies conditions. Lead isotope compositions support crystallisation at ca. 1.7 Ga from lead that is similar in composition to earlier gold-related galena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号