首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first study of electrical conductivities of silicate melts at very high pressures (up to 10 GPa) and temperatures (up to 2,173 K). Impedance spectroscopy was applied to dry and hydrous albite (NaAlSi3O8) glasses and liquids (with 0.02–5.7 wt% H2O) at 473–1,773 K and 0.9–1.8 GPa in a piston-cylinder apparatus, using a coaxial cylindrical setup. Measurements were also taken at 473–2,173 K and 6–10 GPa in two multianvil presses, using simple plate geometry. The electrical conductivity of albite melts is found to increase with temperature and water content but to decrease with pressure. However, at 6 GPa, conductivity increases rapidly with temperature above 1,773 K, so that at temperatures beyond 2,200 K, conductivity may actually increase with pressure. Moreover, the effect of water in enhancing conductivity appears to be more pronounced at 6 GPa than at 1.8 GPa. These observations suggest that smaller fractions of partial melt than previously assumed may be sufficient to explain anomalously high conductivities, such as in the asthenosphere. For dry melt at 1.8 GPa, the activation energy at T > 1,073 K is higher than that at T < 1,073 K, and the inflection point coincides with the rheological glass transition. Upon heating at 6–10 GPa, dry albite glass often shows a conductivity depression starting from ~1,173 K (due to crystallization), followed by rapid conductivity enhancement when temperature approaches the albite liquidus. For hydrous melts at 0.9–1.8 GPa, the activation energies for conductivity at ≥1,373 K are lower than those at <973 K, with a complex transition pattern in between. Electrical conductivity and previously reported Na diffusivity in albite melt are consistent with the Nernst–Einstein relation, suggesting the dominance of Na transport for electrical conduction in albite melts.  相似文献   

2.
We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).  相似文献   

3.
The effect of pressure on ionic diffusion in orthorhombic MgSiO3 perovskite has been investigated using density functional theory. An intensive investigation of possible silicon pathways revealed new positions of the saddle-points and an enthalpy of migration at 26.2 GPa of 4.7 eV that is in fair agreement with the experimental values of about 3.5 eV at 25 GPa. This is much lower than found in previous studies (~9 eV) and removes the need to explain silicon diffusion by a complicated process involving coupled oxygen vacancies, as has been previously proposed. Our migration enthalpies for oxygen and magnesium are in excellent agreement with experiments. We find that oxygen diffusion occurs via a chain of several inequivalent jumps along the octahedron edges, and that magnesium occurs via two inequivalent [110] jumps and one [001] jump. We also present activation volumes for all three species at 25 and 135 GPa.  相似文献   

4.
 The densification and structural changes in SiO2 glass compressed up to 43.4 GPa by shock experiments are investigated quantitatively by the X-ray diffraction technique. Direct structural data (average Si–O and Si–Si distances and Si–O–Si angles, coordination number of the Si atom) of these shock-densified SiO2 glasses have been obtained by analyzing the radial distribution function curves, RDF(r), calculated with X-ray diffraction data. The coordination number of all densified glasses is about 4 and shows almost no pressure variation. The SiO2 glass has shown density increase of 11% at a shock compression of 26.3 GPa. This density evolution could not be explained by the coordination change. The reduction of the average Si–O–Si angle (144° at 0 GPa to 136° at 26.3 GPa) obtained from RDF(r) data may account for this density increase. This Si–O–Si angle change may be caused by shrinkage of the network structure and the increase of small rings of SiO4 tetrahedra. For higher shock pressure, a decrease in the Si–O–Si angle to 140° was observed. This is consistent with the decrease in density at 32.0 and 43.2 GPa. This decrease in the Si–O–Si angle and density could be attributed to an annealing effect due to high after-shock residual temperature. This pressure dependence of average Si–O–Si angles in shock-densified SiO2 glass agrees with the results of our previous Raman spectroscopic study. On the other hand, the pressure variation for the first sharp diffraction peak (FSDP) was analyzed to estimate the evolution of intermediate range structures. It is suggested that the mean d value (d m ) obtained from the position of FSDP strongly depends on the shock and residual temperature, as well as shock pressure. Received: 29 June 2001 / Accepted: 14 November 2001  相似文献   

5.
 Raman spectra of a single-crystal fragment of hydrous γ-Mg2SiO4, synthesized in a multianvil press, have been measured in a diamond-anvil cell with helium as pressure-transmitting medium to 56.5 GPa at room temperature. All five characteristic spinel Raman modes shift continuously up to the highest pressure, showing no evidence for a major change in the crystal structure despite compression well beyond the stability field of ringwoodite in terms of pressure. At pressures above ∼30 GPa a new mode on the low-frequency site of the two silicate-stretching modes is clearly identifiable, indicating a modification in the spinel structure which is reversible on pressure release. The frequency of the new mode (802 cm−1 extrapolated to 1 bar) suggests the presence of Si–O–Si linkages and/or a partial increase in the coordination of Si. Direct determination of the subtle structural change causing the new Raman mode would require high-pressure, single-crystal synchrotron X-ray diffraction experiments. The Raman modes of hydrous and anhydrous Mg-end-member ringwoodite are nearly identical up to 20 GPa, suggesting that protonation has only minor effect on the lattice dynamics over the entire pressure stability range for ringwoodite in the mantle. Received: 7 December 2001 / Accepted: 16 April 2002  相似文献   

6.
The pressure dependence of the cristobalite Raman spectrum has been investigated to 22 GPa at room temperature, using single-crystal Raman spectroscopy with a diamond-anvil cell. We observe a rapid, first-order phase transition on increasing pressure, consistent with the cristobalite I?II transition revealed in previous x-ray diffraction experiments. The phase transition has been bracketed at 1.2±0.1 GPa on increasing pressure and 0.2±0.1 GPa on decreasing pressure. The pressure shifts II) of 11 Raman bands in the high-pressure phase (cristobalite have been measured. Evidence for an unusual hybridization of modes at 490–500 cm?1 is found. Changes in the Raman spectra also reveal an additional phase transition to a new phase at P ≈ 11 GPa, which remains to be fully characterized.  相似文献   

7.
Stabilities of hexagonal new aluminous (NAL) phase and Ca-ferrite-type (CF) phase were investigated on the join NaAlSiO4-MgAl2O4 in a pressure range from 23 to 58 GPa at approximately constant temperature of 1,850 K, on the basis of in situ synchrotron X-ray diffraction measurements in a laser-heated diamond-anvil cell. The results show that NAL is formed as a single phase up to 34 GPa, NAL + CF between 34 and 43 GPa, and only CF at higher pressures in 40%NaAlSiO4-60%MgAl2O4 bulk composition. On the other hand, both NAL and CF coexist below 38 and 36 GPa, and only CF was obtained at higher pressures in 60%NaAlSiO4-40%MgAl2O4 and 20%NaAlSiO4-80%MgAl2O4 composition, respectively. These results indicate that NAL appears only up to 46 GPa at 1,850 K, and CF forms continuous solid solution at higher pressures on the join NaAlSiO4-MgAl2O4. NAL has limited stability in subducted mid-oceanic ridge basalt crust in the Earth’s lower mantle and undergoes a phase transition to CF in deeper levels.  相似文献   

8.
The viscosity of a silicate melt of composition NaAlSi2O6 was measured at pressures from 1.6 to 5.5 GPa and at temperatures from 1,350 to 1,880°C. We employed in situ falling sphere viscometry using X-ray radiography. We found that the viscosity of the NaAlSi2O6 melt decreased with increasing pressure up to 2 GPa. The pressure dependence of viscosity is diminished above 2 GPa. By using the relationship between the logarithm of viscosity and the reciprocal temperature, the activation energies for viscous flow were calculated to be 3.7 ± 0.4 × 102 and 3.7 ± 0.5 × 102 kJ/mol at 2.2 and 2.9 GPa, respectively.  相似文献   

9.
The 1-bar structure and properties of the high-pressure SiO2 polymorph coesite have been simulated by lattice and molecular dynamics up to 1600 and 2100 K, respectively. In agreement with available experimental data, the monoclinic structure was found metastable (with respect to cristobalite or SiO2 liquid) up to the highest temperatures investigated. Thermal expansion of coesite is small because of restricted rotations of SiO4 tetrahedra. Above about 1000 K, the structure of coesite becomes dynamically disordered and similar to those reported for the -phases of quartz and cristobalite. Disorder sets smoothly, however, in contrast to its abrupt onset in quartz and cristobalite, which have transitions. The radial distribution functions for all bond distances indicate that order then prevails only for the nearest neighbors whereas the angle distributions widen markedly so that the monoclinic form of coesite with an Si–O–Si angle of 180° is only a time-averaged structure.  相似文献   

10.
Raman spectroscopy and heat capacity measurements have been used to study the post-perovskite phase of CaIr0.5Pt0.5O3, recovered from synthesis at a pressure of 15 GPa. Laser heating CaIr0.5Pt0.5O3 to 1,900 K at 60 GPa produces a new perovskite phase which is not recoverable and reverts to the post-perovskite polymorph between 20 and 9 GPa on decompression. This implies that Pt-rich CaIr1−xPtxO3 perovskites including the end member CaPtO3 cannot easily be recovered to ambient pressure from high P–T synthesis. We estimate an increase in the thermodynamic Grüneisen parameter across the post-perovskite to perovskite transition of 34%, of similar magnitude to those for (Mg,Fe)SiO3 and MgGeO3, suggesting that CaIr0.5Pt0.5O3 is a promising analogue for experimental studies of the competition in energetics between perovskite and post-perovskite phases of magnesium silicates in Earth’s lowermost mantle. Low-temperature heat capacity measurements show that CaIrO3 has a significant Sommerfeld coefficient of 11.7 mJ/mol K2 and an entropy change of only 1.1% of Rln2 at the 108 K Curie transition, consistent with the near-itinerant electron magnetism. Heat capacity results for post-perovskite CaIr0.5Rh0.5O3 are also reported.  相似文献   

11.
A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41 cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and hence the pressure evolution of the unit-cell volume of the I41 cd structure has been described using a third-order Birch–Murnaghan equation of state (BM-EoS) with the following parameters: V 0  = 923.21(6) Å3, K 0  = 45.6(6) GPa, and K′ = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a 0  = 9.4747(3) Å, K 0a  = 73.3(9) GPa, K′ a  = 5.1(3) and c 0  = 10.2838(4) Å, K 0c  = 24.6(3) GPa, K′ c  = 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β 0c 0a  = 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively rigid tetraborate groups [B4O7]2− forms channels occupied by lithium along the polar c–axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2− units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic (Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228–232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337–340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337–342, 1992).  相似文献   

12.
We have used density functional theory to investigate the stability of MgAl2O4 polymorphs under pressure. Our results can reasonably explain the transition sequence of MgAl2O4 polymorphs observed in previous experiments. The spinel phase (stable at ambient conditions) dissociates into periclase and corundum at 14 GPa. With increasing pressure, a phase change from the two oxides to a calcium-ferrite phase occurs, and finally transforms to a calcium-titanate phase at 68 GPa. The calcium-titanate phase is stable up to at least 150 GPa, and we did not observe a stability field for a hexagonal phase or periclase + Rh2O3(II)-type Al2O3. The bulk moduli of the phases calculated in this study are in good agreement with those measured in high-pressure experiments. Our results differ from those of a previous study using similar methods. We attribute this inconsistency to an incomplete optimization of a cell shape and ionic positions at high pressures in the previous calculations.  相似文献   

13.
We have calculated the compressional, vibrational, and thermodynamic properties of Ni3S2 heazlewoodite and the high-pressure orthorhombic phase (with Cmcm symmetry) using the generalized gradient approximation to the density functional theory in conjunction with the quasi-harmonic approximation. The predicted Raman frequencies of heazlewoodite are in good agreement with room-temperature measurements. The calculated thermodynamic properties of heazlewoodite at room conditions agree very well with experiments, but at high temperatures (especially above 500 K) the heat capacity data from experiments are significantly larger than the quasi-harmonic results, indicating that heazlewoodite is anharmonic. On the other hand, the obtained vibrational density of states of the orthorhombic phase at 20 GPa reveals a group of low-frequency vibrational modes which are absent in heazlewoodite. These low-frequency modes contribute substantially to thermal expansivity, heat capacity, entropy, and Grüneisen parameter of the orthorhombic phase. The calculated phase boundary between heazlewoodite and the orthorhombic phase is consistent with high-pressure experiments; the predicted transition pressure is 17.9 GPa at 300 K with a negative Clapeyron slope of −8.5 MPa/K.  相似文献   

14.
The Raman spectra of bixbyite, Mn2O3, were measured up to 40 GPa at room temperature. Mn2O3 undergoes a phase transition from the C-type rare earth structure to the CaIrO3-type (post-perovskite) structure at 16–25 GPa. The transition pressure measured in Raman spectroscopy is significantly lower than the pressure reported previously by an X-ray diffraction study. This could be due to the greater polarizability in the CaIrO3-type structure, consistent with high-pressure observation on the CaIrO3 type in MgGeO3, although it is still possible that experimental differences may cause the discrepancy. Unlike the change at the perovskite to CaIrO3-type transition, the spectroscopic Grüneisen parameter does not decrease at the C-type to CaIrO3-type transition. The spectroscopic Grüneisen parameter of the low-pressure phase (C type) is significantly lower than thermodynamic Grüneisen parameter, suggesting significant magnetic contributions to the thermodynamic property of this material. Our Raman measurements on CaIrO3-type Mn2O3 contribute to building systematic knowledge about this structure, which has emerged as one of the common structures found in geophysically important materials.  相似文献   

15.
The Brossasco‐Isasca subunit (BIU) of the Dora Maira massif is currently the only known continental crustal ultrahigh‐pressure (UHP) unit in the Western Alps. The peak pressure/temperature conditions are 3.5–4.5 GPa/~730 °C; exhumation from ~3.5 GPa to ~1 GPa occurred within 2.2 ± 1.8 Ma, but the exhumation mechanism is incompletely understood. We present a conceptual model for the buoyancy‐driven exhumation of the BIU inside a low‐viscosity, dense mantle shear zone weakened by increased strain rates due to simultaneous strike‐slip and subduction (oblique‐slip) of the European plate. Two‐dimensional thermo‐mechanical models simulate such a buoyant uprise of an ellipse inside an inclined layer. Simulations (i) show the feasibility of the conceptual model, (ii) fit the pressure/temperature/time record and (iii) constrain effective viscosities. The model is compatible with the (i) small volume of continental crustal UHP rock in the Western Alps, (ii) minor erosion during exhumation and (iii) strike‐slip deformation during the exhumation period.  相似文献   

16.
High pressure and temperature reactions of a mixture of forsterite and hydrogen molecules have been carried out using a laser heated diamond anvil cell at 9.8–13.2 GPa and ~1,000 K. In situ X-ray diffraction measurements showed no sign of decomposition or phase transitions of the forsterite under these experimental conditions, indicating that the olivine structure was maintained throughout all runs. However, a substantial expansion of the unit cell volume of the forsterite was observed for samples down to ~3 GPa upon quenching to ambient pressure at room temperature. The Raman spectroscopy measurements under pressure showed significant shifts of the Raman peaks of the Si–O vibration modes for forsterite and of the intramolecular vibration mode for H2 molecules toward a lower frequency after heating. Additionally, no OH vibration modes were observed by Raman and FT-IR spectroscopic measurements. These lines of evidence show that the observed volume expansion in forsterite is not explained by the incorporation of hydrogen atoms as hydroxyl, but suggest the presence of hydrogen as molecules in the forsterite structure under these high pressure and temperature conditions.  相似文献   

17.
We present isothermal volume compression behavior of two polycrystalline (Mg,Fe)O samples with FeO = 39 and 78 mol% up to ~90 GPa at 300 K using synchrotron X-ray diffraction and neon as a pressure-transmitting medium. For the iron-rich (Mg0.22Fe0.78)O sample, a structural transition from the B1 structure to a rhombohedral structure was observed at 41.6 GPa, with no further indication of changes in structural or compression behavior changes up to 93 GPa. In contrast, a change in the compression behavior of (Mg0.61Fe0.39)O was observed during compression at P ≥ 71 GPa and is indicative of a spin crossover occurring in the Fe2+ component of (Mg0.61Fe0.39)O. The low-spin state exhibited a volume collapse of ~3.5%, which is a larger value than what was observed for a similar composition in a laser-heated NaCl medium. Upon decompression, the volume of the high-spin state was recovered at approximately 65 GPa. We therefore bracket the spin crossover at 65 ≤ P (GPa) ≤ 77 at 300 K (Mg0.61Fe0.39)O. We observed no deviation from the B1 structure in (Mg0.61Fe0.39)O throughout the pressure range investigated.  相似文献   

18.
We present H2O analyses of MgSiO3 pyroxene crystals quenched from hydrous conditions in the presence of olivine or wadsleyite at 8–13.4 GPa and 1,100–1,400°C. Raman spectroscopy shows that all pyroxenes have low clinoenstatite structure, which we infer to indicate that the crystals were high clinoenstatite (C2/c) during conditions of synthesis. H2O analyses were performed by secondary ion mass spectrometry and confirmed by unpolarized Fourier transform infrared spectroscopy on randomly oriented crystals. Measured H2O concentrations increase with pressure and range from 0.08 wt.% H2O at 8 GPa and 1,300°C up to 0.67 wt.% at 13.4 GPa and 1,300°C. At fixed pressure, H2O storage capacity diminishes with increasing temperature and the magnitude of this effect increases with pressure. This trend, which we attribute to diminishing activity of H2O in coexisting fluids as the proportion of dissolved silicate increases, is opposite to that observed previously at low pressure. We observe clinoenstatite 1.4 GPa below the pressure stability of clinoenstatite under nominally dry conditions. This stabilization of clinoenstatite relative to orthoenstatite under hydrous conditions is likely owing to preferential substitution of H2O into the high clinoenstatite polymorph. At 8–11 GPa and 1,200–1,400°C, observed H2O partitioning between olivine and clinoenstatite gives values of D ol/CEn between 0.65 and 0.87. At 13 GPa and 1,300°C, partitioning between wadsleyite and clinoenstatite, D wd/CEn, gives a value of 2.8 ± 0.4.  相似文献   

19.
Compression behaviors of CaIrO3 with perovskite (Pv) and post-perovskite (pPv) structures have been investigated up to 31.0(1.0) and 35.3(1) GPa at room temperature, respectively, in a diamond-anvil cell with hydrostatic pressure media. CaIrO3 Pv and pPv phases were compressed with the axial compressibility of β a > β c > β b and β b > β a > β c, respectively and no phase transition was observed in both phases up to the highest pressure in the present study. The order of axial compressibility for pPv phase is consistent with the crystallographic consideration for layer structured materials and previous experimental results. On the other hand, Pv phase shows anomalous compression behavior in b axis, which exhibit constant or slightly expanded above 13 GPa, although the applied pressure remained hydrostatic. Volume difference between Pv and pPv phases was gradually decreased with increasing pressure and this is consistent with the results of theoretical study based on the ab initio calculation. Present results, combined with theoretical study, suggest that these complicate compression behaviors in CaIrO3 under high pressure might be caused by the partially filled electron of Ir4+. Special attention must be paid in case of using CaIrO3 as analog materials to MgSiO3, although CaIrO3 exhibits interesting physical properties under high pressure.  相似文献   

20.
K-lingunite is a high-pressure modification of K-feldspar that possesses the tetragonal hollandite structure. Variations of the Raman spectra of K-lingunite were studied up to ~31.5 GPa at room temperature, and in the range 79–823 K at atmospheric pressure. The Raman frequencies of all bands were observed to increase with increasing pressure, and decrease with increasing temperature for K-lingunite. This behavior is in line with those observed for most of other materials. New sharp Raman bands appear at pressures greater than 13–15 GPa, suggesting a phase transition in K-lingunite with increasing pressure. The transition is reversible when pressure was released. The appearance of these new Raman bands may correspond to the phase transition revealed earlier at around 20 GPa by X-ray diffraction studies. Instead of transforming back to its stable minerals, such as orthoclase, microcline or sanidine, K-lingunite became amorphous in the temperature range 803–823 K at atmospheric pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号