首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ca. 2.7–2.5 Ga Slave Province is a granitegreenstone terrane comprising deformed sedimentary and subordinate volcanic belts extensively intruded by granitoid rocks. The Nd isotopic data are reported for 58 samples of supracrustal and granitoid rocks exposed along a 400 km, east-west, transect at 65°N across the structural grain of the province. Initial Nd values reveal distinctly different crustal sources in the eastern compared to the western parts of the province, as expected from tectonic assembly of the province through accretion of juvenile crust to older continental crust. Supracrustal sequences (ca. 2.71–2.65 Ga) from the central and eastern parts of the province have positive Nd(1) values (+0.3 to +3.6), consistent with juvenile sources and formation remote from significantly older crust. Syn to late-deformation (ca. 2.63–2.60 Ga), mantle-derived diorites and related tonalites (type I) from the central and eastern parts of the province have similar initial Nd values (-0.1 to +2.7). In contrast, samples from the westernmost plutons, which intrude exposed pre-3.1 Ga crust, have much lower Nd(1) values (-1.0 to4.6) suggesting contamination of these magmas by older crust. The Nd(1) values of post-deformation granites (s.s.) (type II) also vary systematically across the province: values for granites west of longitude 110°30W range from-0.2 to -5.3; those to the east range from +0.6 to +3.7. These data suggest mixed crustal sources dominated by Mid to Early Archean material ( Nd-2.6 to- 17 at 2.6 Ga) for the western granitoid rocks and juvenile sources for the eastern granites. The Nd isotopic data are consistent with the geology of the province in that exposures of Mid to Early Archean crustal rocks, predating the principal 2.7–2.5 Ga orogenic event are restricted to the western part of the province. The asymmetric pattern defined by the Nd isotopic data indicates the presence of distinct crustal rocks beneath the Slave Province. Similar isotopic variations observed across Phanerozoic collisional orogens have been interpreted to reflect tectonic assembly of crust by accretion of juvenile crustal terranes to an older continental margin. This process may also have been an important mechanism in the cratonization of the Slave Province.  相似文献   

2.
Young volcanic rocks from different sections of the Aleutian Islands-Alaska Peninsula Arc have been measured for 87Sr/86Sr, 143Nd/144Nd and some trace elements. We found the 143Nd/144Nd to be highly restricted in range ( Nd=6 to 7) and low as compared to midocean ridge ba-salts (MORB). This indicates that the source of the Aleutian Arc magmas is different from MORB and remarkably isotopically homogeneous with respect to Nd. The range reported here for arc rocks is substantially smaller than found by other workers. However, the Sr isotope ratios vary considerably ( Sr=–24 to –14). Those samples from small volcanic centers north of the main arc (second arc) are characterized by low Sr. Our data in combination with previous studies suggest that there are slight geochemical differences between discrete sections of the arc. The general uniformity of Nd isotope ratios are thought to be the surface expression of an efficient mixing or homogenization process beneath the arc plate, but which still causes a wide dispersion in Sr isotopic composition.To relate the arc rocks to the broader tectonic setting and to identify possible sources of arc magmas, measurements were done on volcanic and sedimentary rocks from the North Pacific/Bering Sea area. Alkali basalts from the back-arc islands St. George, Nunivak and St. Lawrence and alkali-rich tholeiites from the fore-arc have Nd=+4 to +9 and are correlated on the Sr- Nddiagram parallel to the mantle array but shifted to lower Sr. These samples are thought to be isotopically representative of the mantle transported to that region. A tholeiitic basalt from the Kamchatka Basin ocean floor (back-arc), however, yielded typical MORB values ( Nd=10, Sr=–24). Composite sediment samples were made from DSDP cores in the Aleutian Abyssal Plain, Gulf of Alaska and the Alka Basin which represent mixtures of continentally and arc-derived materials. These composites have intermediate Nd isotopic ( Nd= –2 and +2) and high Sr isotopic values ( Sr=+9 and +37). These data show that possible source materials of the Aleutian Arc volcanics are isotopically different from and much more heterogeneous than the arc rocks themselves.On the basis of this study and of literature data, we developed a set of alternative models for volcanic arc magma generation, based on the restricted range in Nd and the wider range in Sr for arc rocks. Different isotopic and trace element characteristics found in different arcs or arc sections are explained by varying mixing proportions or concentrations in source materials. The basic observations require rather strict mixing ratios to obtain constant Nd. The preferred model is one where the melting of subducted oceanic crust is controlled by the amount of trapped sediment with the melting restricted to the upper part of the altered basaltic layer. Homogenization within the upper part of the oceanic crust is brought about by hydrothermal circulation attending dewatering of the slab during subduction and possibly some oxygen exchange of the magmas on ascent.Division Contribution Number 3849 (411)  相似文献   

3.
Rocks with boninitic affinities have been recognised in a number of ophiolites, including the Cambrian Heathcote and Mt Wellington Greenstone Belts of Victoria. Boninites and high-Mg andesites from the Heathcote Greenstone Belt show a restricted range of initial Nd values of between +3.3 to +5.8. Extremely refractory boninites from the Mt Wellington Greenstone Belt have Nd ranging from +1.3 to –9. Ti/Zr is positively correlated with Sm/Nd with the Heathcote lavas generally possessing greater depletion of Ti and enrichment of Zr relative to the middle and heavy REE with increasing LREE/HREE. These data are consistent with the generation of boninites by partial melting of refractory peridotite following invasion by LREE- and Zr-enriched, low Nd fluids. Tholeiites overlying the boninites in both greenstone belts have flat REE patterns and Nd+5, lower than that anticipated for lavas derived from depleted MORB source reservoirs in the Cambrian, suggesting that their source was also contaminated by a LREE-enriched, low Nd component similar to that involved in the generation of the Howqua boninites. The added components have characteristics compatible with their derivation from subducted altered oceanic crust and/or from wet subducted sediments. The identification of boninites and other low-Ti lavas in the Victorian greenstone belts is strong evidence for island arc development in southeastern Australia during the Lower Cambrian and provides further support for a subduction-related origin for many ophiolites.  相似文献   

4.
Initial Nd and Sr isotopic ratios were obtained for middle Miocene igneous rocks as well as for related rocks from the Outer Zone of Southwest Japan to investigate the petrogenesis of acidic magmas and their relation to a peculiar tectonic environment bearing on the back-arc spreading of the Japan Sea. On the Nd- Sr diagram, data points for the acidic rocks fall in the – Nd, + Sr quadrant occupying different positions from those for sedimentary and old crustal rocks, and seem to define several subparallel lines which extend towards the lower-righthand sedimentary field. The S-type acidic rocks occupy an intermediate position between I-type rocks and sedimentary ones, a fact suggesting mixing of an igneous component and a sedimentary one. The linear mixing trend observed on the Nd- Sr diagram can be attained in the restricted case that the igneous component has similar Sr/Nd concentration ratios to that of the sedimentary one, which implies an intermediate to acidic composition for the igneous component. Inconsistency between the elemental and isotopic variations observed may be reconciled by considering that mixing, probably in the relatively deep part of the crust, might have occured prior to chemical differentiation processes. The episodic igneous activity and the high heat energy required to melt such materials involving sedimentary rocks may be explained by a model in which a hot mantle region probably corresponding to the rising part of the mantle convection supplied the heating energy to the Outer Zone of Southwest Japan when passing beneath Southwest Japan in the course of movement of the hot rising part from the Shikoku basin areas to the Japan Sea area.  相似文献   

5.
The Peräpohja schist belt in northern Finland rests unconformably on Archaean granitoids, and marks the early stages of Proterozoic crustal evolution in the Fennoscandian (Baltic) shield. 2440 Ma old layered mafic intrusions predate the supracrustal , and ca. 2200 Ma old sills of the gabbro-wehrlite association intrude the lowest quartzites and volcanics (Runkaus) of the sequence. The Sm-Nd mineral isochron of the Penikat layered intrusion gives an age of 2410±64 Ma. The initial Nd-values of the Penikat intrusion (Nd(2440) = –1.6) and the Runkausvaara sill (Nd(2200) 0) suggest that these mafic magmas were contaminated by older crustal material. The Sm-Nd and Pb isotopic results on the 2.44–2.2 Ga old Runkaus volcanics indicate mobility of Pb, fractionation of Sm/Nd during late greenschist facies metamorphism, and crustal contamination. The Pb-Pb data provide an age of 1972±80 Ma with a high initial 207Pb/204Pb ratio (1 = 8.49), while scattered Sm-Nd data result in an imprecise age of 2330±180 Ma, with an initial Nd-value of about zero. Secondary titanite gives an U-Pb age of ca. 2250 Ma. The Jouttiaapa basalts, in contrast, ascended from the mantle without interaction with older crust. These LREE depleted tholeiites mark a break in continental sedimentation, and yield a Sm-Nd age of 2090±70 Ma. Their initial Nd = + 4.2 ±0.5 implies that the subcontinental early Proterozoic mantle had been depleted in LREE for a long period of time. The first lava flows are strongly depleted in LREE, suggesting that their source was significantly more depleted than the source of mid-ocean ridge basalts today.  相似文献   

6.
Initial Nd isotope ratios are determined for components of 1.9-1.7 Ga age continental crust in the Ketilidian terrain of South Greenland. The Ketilidian has well-documented ages of migmatization/metamorphism (1.80 Ga) and post-tectonic granitoid intrusion (1.76-1.74 Ga) from U-Pb zircon studies. The Nd results show that: (1) metatholeiites with chondritic 147Sm/144Nd have Nd=+4 to +5 at 1.8 Ga; (2) migmatites, paragneisses and an early granitoid have Nd close to zero; (3) post-tectonic norites have Nd +1.5, while spatially associated more-abundant granitoids have Nd=0 to +1. The metatholeiites show that a normal depleted mantle (Nd=+4 to +5) was present beneath this 1.9-1.7 Ga orogenic zone, as is the case in such environments today. However, metatholeiites are an insignificant part of the Ketilidian crust, and the bulk initial ratio of the whole terrain lies close to Nd=0. Rather than invoking depleted and undepleted mantle sources whose products did not mix, we infer the Nd=0 value to be caused by mixing of a component derived from depleted mantle (Nd=+ 4 to +5) with Archean crustal material (Nd=-9 to -13). As there are no proven relics of Archean crust beyond the border zone of the Ketilidian, and the Nd= 0 value appears to be a wellhomogenized feature, we propose that the Archean material was added in the form of sediments transported to the orogenic zone on oceanic crust. The Archean component comprised between 5 and 17% of the Ketilidian, and the most reasonable estimate is 10%. Thus this 1.9-1.7 Ga terrain consisted of 90% new mantle-derived crust.  相似文献   

7.
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16–9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial Nd values (1 Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20–40% (by mass) wall-rock into magmas that were injected into the upper crust. The low Nd magmas most likely formed via the incorporation of low 18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher 18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13–14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70–80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0–10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing basification of a lower crustal magma source by repeated injection of mantle-derived mafic magmas.  相似文献   

8.
Ijolites from the type locality at Iivaara, Finland, form a continuous series of magmatic rocks ranging from urtites to melteigites. Both Ni and Cr, but also the large ion lithophile light-rare-earth elements, Zr, Hf, Nb, Rb, Sr and Ba are low in concentration. The Nd contents equal those of the neighboring fenites, Sr is distinctly less abundant, and there is no significant Eu anomaly. The 143Nd/144Nd and 87Sr/86Sr of the ijolites demonstrate a systematic covariation between the data of carbonaties from the Kola Alkaline Province (Sr – 13.8, Nd + 5.6) and those of the fenites at Iivaara (Sr + 132.9, Nd – 24.7) with Sr varying from +0.3 to +23.9 and Nd varying from-9.2 to-19.3. The trace element abundances and the isotopic data give evidence for a crystallization of the rocks from a liquid generated by melting (rheomorphism) of high-grade fenitized country rocks rather than from a primary mantle-derived magma which was contaminated at crustal levels. The fenitization of wall rocks preceding the ijolite magma formation was clement selective. Mixing of elements during the fenitization process between the designated components carbonatite (or derivative fenitizing fluid) and wall rock should have been dynamical depending on the stability of the wall rock mineral assemblages in contact with the fenitizing fluids, the migration velocity of these fluids, and their capacity of the respective elements. Such dynamical mixing explains best the variation of the isotope ratios withont systematic covariation of the respective element concentrations.  相似文献   

9.
The Closepet batholith in South India is generally considered as a typical crustal granite emplaced 2.5 Ga ago and derived through partial melting of the surrounding Peninsular Gneisses (3.3 to 3.0 Ga). In the field, it appears as a composite batholith made up of at least two groups of intrusions. (a) An early SiO2-poor group (clinopyroxene quartz-monzonite and porphyritic phyritic monzogranite) is located in the central part of the batholith. These rocks display a narrow range in both initial 87Sr/86Sr (0.7017–0.7035) and Nd(–0.9to –4.1). (b) A later SiO2-rich group (equigranular grey and pink granites) is located along the interface between the SiO2-poor group and the Peninsular Gneisses. They progressively grade into migmatised Peninsular Gneisses, thus indicating their anatectic derivation. Their isotopic characteristics vary over a wide range (87Sr/86Sr ratios=0.7028–0.7336 and Nd values from-2.7 to-8.3, at 2.52 Ga). Field and geochronological evidence shows that the two groups are broadly contemporaneous (2.518–2.513 Ga) and mechanically mixed. This observation is supported by the chemical data that display well defined mixing trends in the Sr vs Nd and elemental variation diagrams. The continuous chemical variation of the two magmatic bodies is interpreted in terms of interaction and mixing of two unrelated end-members derived from different source regions (enriched peridotitic mantle and Peninsular Gneisses). It is proposed that the intrusion of mantle-derived magmas into mid-crustal levels occurred along a transcurrent shear zone; these magmas supplied additional heat and fluids that initiated anatexis of the surrounding crust. During this event, large-scale mixing occurred between mantle and crustal melts, thus generating the composite Closepet batholith. The mantle-derived magmatism is clearly associated with granulite facies metamorphism 2.51±0.01 Ga ago. Both are interpreted as resulting from a major crustal accretion event, possibly related to mantle plume activity.  相似文献   

10.
Greenstone, blueschist and eclogite metabasaltic blocks from the Franciscan complex of California preserve extensive petrographic and chemical evidence for interaction with hydrous fluids at high-P, low-T metamorphic conditions. The Nd and Sr isotope variations within and among the blocks constrain the origin of the basaltic protoliths, the nature of the fluid metasomatism that occurred within the upper levels (15–45 km) of the paleosubduction zonc, and the character and provenance of the rock that generated the hydrous fluids within the paleosubduction zone. Samples with little or no petrographic evidence of retrograde alteration and unaltered garnet separates have Nd. With increasing degrees of retrograde alteration, Nd isotope compositions are consistently lower, ranging down to Nd(160)=5. Actinolitic alteration rinds which are present on some blocks have the least radiogenic compositions with Nd=1.6 to 6.1. While Nd isotope compositions of unaltered blockes are in the range expected for basalt derived from normal depleted mantle, the Sr isotope compositions are more radiogenic ranging from Sr(160)=–5 to +11. Compositions of unaltered eclogite and blue-schist blocks are consistent with a protolith origin in normal oceanic crust derived from depleted mantle. The Sr isotopy systematics indicate that the protoliths were modified by seawater alteration in an ocean-floor hydrothermal system. Isotopic compositions of samples from parts of blocks that have a retrograde metamorphic overprint show a strong correlation between less radiogenic Nd compositions and the extent of retrograde metamorphism. Maximum Nd isotope ratios of the metasomatizing fluid are provided by analyses of actinolitic rinds, and range from Nd(160)=1.6 to 6.1. A possible source for fluids of this composition is subducted sediment that was derived from a continental craton. Because rind formation occurred while the basaltic blocks were within an ultramafic matrix, the fluids must have migrated from sediments in the accretionary wedge into an overlying wedge of mantle material imbricated with blocks of oceanic crust. This suggests possibly km-scale movement of fluids that carry an amount of the rare-earth elements sufficient to significantly modify the trace-element budget of subducted basalt.  相似文献   

11.
New Hf isotopic compositions for island arc basalts from the Luzon arc (Philippines) define a remarkable sub-horizontal trend in Hf–Nd isotopic space with a small range of Hf (+5 to +17) associated with a large variation in Nd (–7 to +8). The data plot above and barely overlap the terrestrial array defined by oceanic basalts and continental crust. Mixing hyperbolas passing through the data intersect fields for depleted mantle and pelagic sediments suggesting that these two components formed the source of the Luzon arc lavas. An exception is the Batan Island where the low Nd ratios are associated with low Hf values. A mixing hyperbola fitting the Batan samples suggests that their mantle source was modified by subducted material prior to contamination by terrigenous clays. More generally, the geochemical relationships in Luzon lavas show that the mixing endmembers are source components rather than melts. The relationship between Nd and Hf isotopic compositions in the Luzon volcanics show that the type of sediment subducted under an island arc is a determining factor in the control of the two isotopic systems in island arc environments.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
Initial 87Sr/86Sr and 143Nd/144Nd ratios of Phanerozoic granitoids and related intrusions of the New Zealand block display a mixing-type array indicative of the involvement in their sources of old continental crustal material, most likely of Proterozoic age. Sr(T) values range from –4 to +273 (87Sr/86Sr=0.7041–0.7233), while Nd(T) ranges from +2.7 to –11.0. Preexisting metasedimentary rocks have generally higher Sr and lower Nd (ranging to present-day values of +646 and –15.0, respectively), and, particularly for the Mesozoic intrusives, are isotopically appropriate mixing end-members. The widespread, early Paleozoic Greenland Group graywackes, which are derived from Proterozoic sources, are modeled as the source of the crustal end-member mixing with mantle-derived mafic magmas to produce the intrusive rocks. Four different types of models are applied to the isotopic and trace-element (Rb, Sr, Ba, REE) data: simple mixing; mixing with a partial melt of the metasedimentary rock, with or without isotopic equilibrium; and assimilation-fractional crystallization. Based on these models, some constraints may be applied on petrogenesis (e.g., the lack of high Rb concentrations points to the presence of biotite, and HREE depletion points to the presence of garnet); however, the models fail to adequately explain all the data. The New Zealand granitoids show similarities in isotopic character not only to rocks from offshore islands on the New Zealand block, but also to similar-aged granitoids in adjacent regions of Antarctica and Australia. This points to similarities in crustal character between continental blocks formerly proximal in Gondwanaland. We note an overall increase in Nd and decrease in Sr in felsic magmas from the Paleozoic to the Mesozoic to the Cenozoic in New Zealand, indicative of a decrease over time in the level of influence of recycled continental crust in subduction-related magmatism.Division Contribution No. 4538 (582)  相似文献   

13.
Zusammenfassung Mit Hilfe von ca. 1500 radiometrischen Zeitmessungen wird eine Synthese der prÄkambrischen Entwicklung Südamerikas aufgestellt. In Abb. 1 wird versucht, die Lage der spÄtprÄkambrischen orogenen Gürtel sowie ihre Plattformen darzustellen.Der grö\te alte Kern des Kontinents umfa\t den Guyana-Schild, das Basement des Amazonas-Sedimentbeckens und den Guaporé-Kraton im Süden, einen Raum von ungefÄhr 4,5 Mio. qkm. Die meisten Gesteine wurden von dem transamazonischen orogenen Zyklus erfa\t, dessen radiometrisches Alter etwa 2000 M. J. betrÄgt. Der etwa gleichaltrige SÃo-Francisco-Kraton in Ostbrasilien umfa\t ungefÄhr 1 Mio. qkm. Kleinere Kerne, die ebenfalls die Ereignisse des transamazonischen Zyklus' widerspiegeln, wurden nahe der Atlantikküste, östlich der Mündung des Amazonasflusses (SÃo-Luis-Kraton-Gebiet) und in der Umgebung des La-Plata-Flusses (Rio de la Plata-Kraton-Gebiet) gefunden.Die Kratone sind getrennt durch metamorphe Gürtel, die zum brasilianischen orogenen Zyklus spÄtprÄkambrischen Alters gehören. Der Caririan-Gürtel und die Sergipe-Geosynklinale liegen in der Nordostecke von Brasilien, und der Ribeira-Gürtel erstreckt sich entlang der Atlantikküste im Süden. Zwei symmetrische geosynklinale Einheiten wurden im zentralen Teil des Kontinents erkannt: der Brasilia- und der Paraguay-Araguaia-Gürtel.In den brasilianischen orogenen Gürteln treten an vielen Stellen transamazonische oder sogar Ältere Serien auf, Anzeichen für aufgearbeitetes altes Basement. Dies scheint zu zeigen, da\ die Sialkruste des südamerikanischen Kontinents vor 2000 M. J. schon eine rÄumliche Ausdehnung von mehr als 10 Mio. qkm hatte.
A general synthesis of the precambrian evolution of South America has been made with the aid of about 1500 radiometric age determinations. In Fig. 1, the position of the late precambrian orogenic belts, as well as their platforms, is tentatively outlined.The largest ancient core of the continent includes the Guyana Shield, the basement of the Amazon sedimentary basin, and the Guaporé craton, to the south, covering an area of about 4.5 million square kilometers. Most of the rocks were affected by the Trans-Amazonian orogenic cycle, whose radiometric ages are close to 2000 m. y. The SÃo Francisco craton of similar age outcrops over an area of about one million square kilometers, in eastern Brazil. Smaller ancient nucleii, also reflecting the events of the Tranz-Amazonian cycle, were found near the Atlantic coast, east of the mouth of the Amazon river (SÃo Luis cratonic area), and surrounding the La Plata river (Rio de la Plata cratonic area).The old cratonic areas are separated from each other by metamorphic belts which belong to the Brazilian orogenic cycle of late precambrian age. The Caririan belt, and the Sergipe geosyncline, occur at the northeastern corner of Brazil, and the Ribeira belt along the Atlantic coast, to the south. Two symmetrical geosynclinal units were recognized in the central part of the continent: the Brasilia and the Paraguay-Araguaia belts.Within the areas of the Brazilian orogenic belts, in many places Trans-Amazonian or even older ages occur, indicating remobilized ancient basement. This seems to demonstrate that the sialic crust of the South American continent, 2000 m. y. ago, already exhibited an areal extent of more than 10 million square kilometers.

Résumé Une synthèse générale de l'évolution précambrienne de l'Amérique du Sud a été faite à l'aide de 1500 déterminations d'âge radiométrique. La fig. 1 présente un essai sur la répartition des zones orogéniques du Précambrien supérieur et de leurs platesformes.Le noyau ancien du continent, qui est le plus vaste, comprend le bouclier de la Guyane, le socle du bassin sédimentaire de l'Amazone et le Craton de Guaporé, au Sud, couvrant une aire d'environ 4,5 millions de Km2. La plupart des roches ont été affectées par le cycle orogénique Trans-Amazonien dont l'âge radiométrique est d'environ 2000 millions. Le craton de SÃo Francisco d'âge semblable, affleure sur une étendue d'environ 1 million de Km2, dans l'Est du Brésil. Des noyaux anciens plus petits, affectés également par le cycle Trans-Amazonien, ont été trouvés près de la cÔte Atlantique, à l'Est de l'embouchure de l'Amazone (région cratonique de SÃo Luis), et aux environs du fleuve la Plata (région cratonique du Rio de la Plata).Les régions cratoniques anciennes sont séparées les unes des autres par des zones métamorphiques appartenant au cycle orogénique brésilien, d'âge Précambrien supérieur. La zone caririenne et le géosynclinal de Sergipe affleurent dans l'extrémité NE du Brésil, et la zone de Ribeira, le long de la cÔte Atlantique au S. Deux unités géosynclinales symétriques ont été reconnues dans la partie centrale du continent: les zones de Brasilia et de Paraguay-Araguaia.Dans les régions occupées par les ceintures orogéniques Brésiliennes, il existe en beaucoup d'endroits des roches d'âge Trans-Amazonien et mÊme plus ancien, indices d'un socle ancien remobilisé. Ceci semble démontrer que la croûte sialique du continent Sud Américain montrait déjà, il y a environ 2000 millions d'années, une étendue de plus de 10 millions de Km2.

1500 . . 1 , , . , Guaporé , . . 4,5 . , 2000 . Sao Francisco 1 . . , , , ( Sao Luis) la Plata ( (Rio de la Plata). , . Caririan Sergipe , Paraiba . : Brasilia Paraguay-Araguaia. , . , , , - , 10 . 2000 .
  相似文献   

14.
Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000–1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5).Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma ( Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma ( Nd=+1.0 +/-0.3) and 1027 +/-101 Ma ( Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution.The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd source age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement.  相似文献   

15.
Clay mineral assemblages determined by X-ray diffraction, in the Jurassic to Lower Cretaceous hemipelagic/pelagic sediments and in the Upper Cretaceous flysch sequences of the Lombardian Basin (Southern Alps) record tectonic and possibly climatic changes in the source areas and to a lesser extent, alterations during burial diagenesis.In the hemipelagic/pelagic sediments exposed in the Breggia valley in southern Switzerland, the clay fraction is dominated by illite and smectite and seems not to be altered much by burial diagenesis. The varied clay mineral assemblages of the Liassic sediments result from intense erosion of emergent source areas exposed during early rifting phases. A distinction between smectite-rich limestones and illite-rich marls in these syn-rift to early post-rift sediments could reflect short-term climatic fluctuations or, alternatively, a preferential replacement of smectite by illite during incipient burial diagenesis in the marls. The predominantly smectitic composition of the clay fraction in the upper Middle Jurassic to Lower Cretaceous sediments documents gentle erosion of smectite-rich soils developing under a warm and seasonally humid climate on a relatively stable distant source area.In the Aptian, an increase in illite in the clay fraction of the hemipelagic Scaglia Lombarda Group points to an increased detrital influx from emergent source areas. This influx is related to the onset of orogenic movements along the Austroalpine/South Pennine active margin, resulting in Middle Cretaceous flysch sedimentation in the Austroalpine realm.Increasing influx from emergent continental crust is reflected by the high amounts of illite and chlorite in the Upper Cretaceous flysch sequences of the eastern Brianza area. However, the high amounts of chlorite in limestone turbidites in the lower part of the flysch sequence (Pontida Formation, Turonian) suggest transformation of smectite to chlorite under conditions of burial diagenesis. In the younger flysch deposits (Bergamo Flysch, Upper Santonian-Campanian) detrital clay minerals are preserved. The occurrence of kaolinite and smectite beside illite and minor chlorite suggests intense weathering and less relief during deposition of the Bergamo Flysch.
Zusammenfassung Röntgendiffraktometrisch bestimmte Tonmineral-Assoziationen in den jurassisch-unterkretazischen hemipelagischen und pelagischen Sedimenten sowie in den Oberkreide-Flyschen des Lombardischen Beckens der Südalpen erlauben wichtige Rückschlüsse über tektonische und eventuell klimatische Änderungen in den Liefergebieten sowie, in etwas geringerem Maße, über Veränderungen während der Uberlagerungs-Diagenese.Die vorwiegend illitisch-smektitische Tonfraktion der hemipelagisch/pelagischen Sedimente der Breggia-Schlucht (Tessin, Süd-Schweiz) scheint wenig verändert durch die Überlagerungs-Diagenese. Die stark variable Zusammensetzung der Tonfraktion der liassischen Sedimente deutet auf eine intensive Erosion der während des frühen Riftings herausgehobenen Liefergebiete. Eine Differenzierung zwischen Smektit-reichen Kalken und Illitreichen Mergeln in den syn- und frühen post-rift-Sedimenten des Lias deutet auf kurzfristige klimatische Fluktuationen (Milankovitch-Zyklen) oder auf einen Ersatz von Smektit durch Illit während der beginnenden Überlagerungs-Diagenese in den Mergeln. Die hauptsächlich smektitische Zusammensetzung der Tonfraktion in den mittel-jurassischen bis unter-kretazischen Sedimenten weist auf eine weniger intensive Erosion Smektit-reicher Böden in relativ stabilen, weit entfernten Liefergebieten mit einem warmen und saisonal humiden Klima.Eine deutliche Zunahme der Sedimentationsraten und des Illits in der Tonfraktion der hemipelagischen Scaglia Lombarda belegt einen zunehmenden detritischen Einfluß vom Aptian an. Dieser detritische Einfluß läßt sich mit dem Einsetzen orogener Heraushebung längs des aktiven Kontinentalrandes an der Süd-Penninikum/Ostalpin-Grenze in Verbindung bringen, da er mit Flysch-Ablagerungen in Süd-Penninikum und Ostalpin zeitlich zusammenfällt.Eine zunehmend detritische Schüttung aus kontinentalen kristallinen Liefergebieten läßt sich in den Illit- und Chlorit-reichen Tonmineral-Assoziationen der Oberkreide-Flysche der östlichen Brianza (Provinz Como, Nord-Italien) erkennen. Die hohen Chlorit-Konzentrationen in Kalk-Turbiditen im unteren Teil der Flysch-Abfolge (Pontida-Formation, Turonian) lassen hingegen eher eine diagenetische Umwandlung von Smektit in Chlorit vermuten. In den jüngeren Flysch-Ablagerungen (Bergamo-Flysch, Oberes Santonian bis Campanian) läßt sich die ursprüngliche detritische Tonmineral-Vergesellschaftung noch erkennen. In dieser Formation deutet das Vorkommen von Kaolinit und Smektit neben Illit und wenig Chlorit auf eine intensive Verwitterung und ein kleineres Relief im Hinterland.

Résumé Les minéraux argileux des formations jurassiques et crétacées du Bassin Lombard (Alpes méridionales) sont étudiés par diffraction des rayons X. Les variations des cortèges argileux des sédiments pélagiques et des flyschs du Crétacé supérieur résultent de modifications tectoniques, climatiques et dans une moindre mesure d'évolutions diagénétiques liées à l'enfouissement.L'illite et la smectite dominent très largement les assemblages minéralogiques dans les sédiments pélagiques et hémipélagiques étudiés dans les gorges de la Breggia (Tessin, Suisse méridionale). L'influence de la diagenèse d'enfouissement paraît modérée et les assemblages argileux très diversifiés des formations liasiques reflètent une érosion active des zones continentales au début du rifting. Dans les formations syn-rift alternantes calcaire-marne, la fraction argileuse des marnes est systématiquement enrichie en illite par rapport à celle des calcaires. Ces relations entre minéralogie des argiles et lithologie résultent soit de fluctuations climatiques, soit d'une illitisation préférentielle des smectites dans les intervalles marneux.A partir du Jurassique moyen et supérieur et jusqu'au Barrémien inclus, la fraction argileuse des sédiments est très smectitique. Elle reflète l'érosion superficielle de sols riches en smectites développés sous climat chaud à humidité saisonnière contrastée sur des domaines continentaux aplanis et probablement très éloignés. A l'Aptien, les apports illitiques importants traduisent, le long de la marge active Austroalpine/Sud Pennique, le début de mouvements orogéniques responsables du dépôt des flyschs dans le domaine Austro-alpin.Dans les faciès flysch du Crétacé supérieur de la Brianza orientale, les apports d'illites et de chlorites s'accordent avec l'augmentation de l'érosion sur les domaines continentaux. Cependant, l'influence d'une diagenèse d'enfouissement est attestée en particulier par les très fortes proportions de chlorites présentes dans les turbidites calcaires (Pontida formation, Turonien). Dans les dépôts de flysch plus récents (Bergamo flysch, Santonien-Campanien), les minéraux argileux détritiques sont mieux préservés. La présence systématique de kaolinite et de smectite suggère le développement d'une altération continentale importante sur des reliefs moins marqués par rapport aux périodes plus anciennes du Crétacé supérieur.

- . , , . Breggia (Tec, ), . . /, , , . , , . , , , , , , , ( ), . , , . Scaglia Lombarda . / , . , , Brianza ( , ). ( , ) . ( , ) . , , , .
  相似文献   

16.
Olivine clinopyroxenite xenoliths in the Oslo Rift,SE Norway   总被引:1,自引:0,他引:1  
Olivine clinopyroxenite xenoliths in a basalt flow at Krokskogen in the Oslo rift consist mainly of Al-Ti-rich clinopyroxene and alteration products after olivine (possibly also orthopyroxene). The clinopyroxene contains primary inclusions of Cr-Al-bearing titanomagnetite, pyrite and devitrified glass, and secondary fluid inclusions rich in CO2. On the basis of petrography, mineral compositions and bulk major and trace element chemistry, it is concluded that the xenoliths represent cumulates with about 5% trapped liquid, formed from a mildly alkaline basaltic magma. Microthermometrical analysis of secondary or pseudosecondary fluid inclusions give a minimum pressure of formation of 5.5 to 6 kbars, that is a depth greater than 16–17 km. The host lava has initial Nd=+4.16±0.17 and Sr=–5.50±0.26, which is believed to reflect the isotopic composition of the lithospheric mantle source region under south Norway in early Permian time. The isotopic character of the magma which gave rise to the xenoliths is preserved in clinopyroxenes which have Nd t =+1.9 to +2.6 and Sr t = –1.1 to –1.8. The isotopic differences between the host magma and the xenoliths reflect some degree of crustal contamination of the xenolith's parent magma.The xenoliths of this study represent an important source of information about the large masses of dense cumulates found at depth in the crust under the Oslo rift.  相似文献   

17.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   

18.
The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with 607 Nd =+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by phlogopite metasomatism. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial 293 Nd value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic crustal residence ages of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.  相似文献   

19.
The Tojottamanselkä gneisses of the Koitelainen region, northern Finland, have been dated by the Sm-Nd and the common Pb methods. The Sm-Nd data of seven samples from a small area (100 m × 100 m) define an isochron ofT=3.06±0.12 (2) Ga, with correspondingI Nd=0.50848±9 (2), or Nd(T)=–3.7±1.8. This age is in good agreement with the zircon U-Pb discordia age (3.1 Ga) reported by Kröner et al. (1981) and is interpreted as the time of magmatic emplacement. The distinctly negative Nd(T) value is found for the first time for Archean tonalitic gneisses and implies derivation of these magmas by remelting of continental material with a long (200–500 Ma) crustal residence time. A few samples, on the other hand, possess Nd(T) values close to zero, hence they are thought to be derived by partial melting of basaltic sources with nearchondritic REE distribution patterns.Common Pb isotopic data yield an isochron age of 2.64±0.24 (2) Ga which is in agreement, within error limit, with the published Rb-Sr isochron age of 2.73±0.24 Ga (Kröner et al. 1981). The age of ca. 2.7 Ga is interpreted as the time of regional metamorphism during which both Pb and Sr isotopes were rehomogenised.The tonalitic gneisses have highly fractionated REE patterns with (La/Yb)N ratios varying from 9 to 43. Like most Archean gneisses of TTG composition (tonalite-trondhjemite-granodiorite), they could be derived by partial melting of crustal sources of basaltic to granodioritic compositions. Direct derivation by melting of mantle peridotites is excluded.The present geochemical study indicates that the Tojottamanselkä gneisses have had a very complex history that involved multi-stage development. Together with the published age data for the basement gneisses and greenstone belts of eastern central Finland (Vidal et al. 1980; Martin et al. 1983a), we conclude that the Archean crustal development in Finland started at least 3.5 Ga ago and passed through a series of magmatic and metamorphic events at 3.1, 2.85, 2.65 and 2.5 Ga before the final intrusions of K-rich granites about 2.4 Ga ago.  相似文献   

20.
Whole-rock and mineral samples from the Jabal al Wask and Jabal Ess ophiolites, northwestern Saudi Arabia, yield Sm-Nd isochron ages of 743+24 Ma and 782±38 Ma, respectively. These formation ages, which provide maximum limits for possible obduction ages, are in broad but not precise agreement with the previously known geologic history of the Arabian Shield. They indicate that the ophiolitic rocks are roughly coeval with nearby volcanic and plutonic rocks, supporting a back-arc origin for the two ophiolites. We suggest that the Jabal al Wask and Jabal Ess ophiolites were parts of the same northeast-southwest trending ophiolite belt, now offset along the Najd fault system. Initial Nd values range from +6.6 to+ 7.6, indicating derivation from a mantle source that has been LIL-depleted for at least 2 Ga. Reported Nd values from the Arabian Shield that are lower than this suggest the presence of older, reworked continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号