首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and ionic relations of fodderbeet (Beta vulgaris) and seabeet (B.maritima) were studied in a greenhouse experiment using garden soil salinized with 200 mM NaCl. Both the species tolerated salinity level of 200 mM NaCl, but seabeet performed better than fodderbeet. Fresh weight of shoot increased significantly (P< 0.01) under higher salt concentration in both the species. Fodderbeet accumulated more biomass under saline conditions than seabeet. Salt treated plants accumulated significantly higher Na+ and CI? content in shoot compared to untreated control plants. Chloride (CI?) of seabeet root was significantly higher than shoot; however, chloride content of shoot was significantly lower in fodderbeet. The concentration of these ions was comparatively higher in seabeet root than fodderbeet in the later growth period. Potassium K+ content was low and revealed antagonistic effect with that of Na+ content. Calcium (Ca+2) ions were not significantly absorbed by shoot of both species. A significant effect of treatment by the root has been observed in both species. Magnesium (Mg+2) content of shoot were increased with the time. Seabeet has absorbed more Mg+2 than fodderbeet. The fodderbeet showed a significant salt tolerance during five week growth period. Seabeet is comparatively more salt tolerant. Domesticated cultivars of fodderbeet like Majorai have considerable adaptability in the inland salt affected areas of Pakistan.  相似文献   

2.
Chloride salinity has been strongly related to enhanced cadmium (Cd) uptake by plants due to increased solubility in the soil solution, even in agricultural soil with very low levels of cadmium. This finding is relevant because the cadmium content of food crops is an important concern for human health. Therefore, the aim of this study was to predict and discuss the chlorine-enhanced uptake of cadmium by two common crops: maize and tobacco under ??non-saline?? (1?mM) and ??very strongly saline?? (200?mM) scenarios using a modified ??biotic ligand model?? and datasets from a set of soil and hydroponic experiments. Results indicated that predicted cadmium uptake rates (expressed as cadmium in plant ??mol?m?2 root) by maize and tobacco plants were consistently higher (54 and 15%, respectively) assuming conditions of ??very strong salinity?? soil compared to the simulated ??non-saline?? soil. In the light of the results of the present research, valuable information is given on modeled cadmium phytoavailability as an indication of the potential risk due to increased cadmium uptake by crops under saline conditions, especially as the enhancement of cadmium uptake in the presence of Cl? salinity may be a general trend that occurs in many edible crops. The biotic ligand model parameterization applied in the present study attempted to simulate conditions commonly found in natural cadmium and salt-affected soils. However, caution is needed to extrapolate results obtained from these models to real soil conditions.  相似文献   

3.
At present, the prior-established threshold values are widely used to classify contaminated agricultural soils with heavy metals under the cultivation of a variety of crops, without considering the different sensitivity of plants to heavy metals. Evaluation of the characteristics of cadmium transfer from a polluted calcareous soil to cultivated wheat crop and assessment of the efficiency of using the threshold values to reflect the soil pollution risk by cadmium in Zanjan Zinc Town area at the northwest of Iran were the goals of this study. Totally, 65 topsoil (0–20 cm) and corresponding wheat samples of an agricultural region in the proximity of a metallurgical factory were collected and analyzed for cadmium concentration. The results revealed that industrial activities strongly control cadmium distribution in the studied soils. Relatively high bioavailable cadmium contents (mean 0.77 mg kg?1) were found in the soils, notwithstanding their alkalinity. It was observed that just 22.5% of the studied area around the Zinc Town is covered by polluted soils with the cadmium concentration exceeding the maximum permissible concentration of 5 mg kg?1, whereas cadmium concentration in wheat grains of 19 sampled plants is higher than the threshold value of 0.2 mg kg?1. Among these polluted plants, a total of eight samples were grown in areas classified as unpolluted soils with cadmium, based on the soil threshold value. It seems that this misclassification of polluted soils is mainly related to the crop sensitivity to heavy metals uptake from the soil which should be considered.  相似文献   

4.
The total lead content in the soil itself is insufficient as a measure to indicate the actual environmental risks related to the presence of lead in the soil. Understanding the mobility of lead and its chemical speciation in soil solution is of great importance for accurately assessing environmental risks posed by lead. Therefore, a laboratory study was carried out to evaluate the effect of inorganic amendments (gypsum, rock phosphate and di-ammonium phosphate) on lead mobility and chemical speciation under different moisture regimes (flooding regime and 75 % field capacity) in normal and salt-affected lead-contaminated soils. After 2, 7, 15, 30, 100 and 110 days of incubation, pore water samples were collected by using Rhizon soil moisture samplers. In order to estimate the chemical speciation of lead in pore water, Visual MINTEQ 3.0 modeling approach was used. The results showed that presence of free Pb2+, PbCl+, Pb(SO4) 2 2? , and PbH2PO4 + was significantly (P ≤ 0.05) affected by the soil moisture regime, incubation time and applied amendments in lead-contaminated soils. The Visual MINTEQ 3.0 predicted free Pb2+ species concentration was found higher in lead-contaminated soils, while PbCl+ was more pronounced in salt-affected soils. Gypsum increased the occurrence of Pb(SO4) 2 2? , while di-ammonium phosphate and rock phosphate enhanced the PbH2PO4 + species formation and decreased free Pb2+ species in pore water. Thus, gypsum is the most effective in reducing lead and free Pb2+ species concentrations in the pore water under different soil moisture regimes and incubation times in normal and salt-affected lead-contaminated soils.  相似文献   

5.
This investigation was carried out for evaluation of indole-3-acetic acid production by bacteria under salinity and salinity–sodicity stress. A total of 298 bacteria were isolated from soils with different levels of electrical conductivity and sodium adsorption ratio. Then, ability of indole-3-acetic acid production under salinity, salinity–sodicity and l-tryptophan concentrations was analyzed. The results indicated that the ability of growth and indole-3-acetic acid production among bacteria was significantly affected by salinity, salinity–sodicity and l-tryptophan concentration. The one of the bacterial species, Arthrobacter siccitolerans, that were isolated from saline–sodic soils can adjust its indole-3-acetic acid production to different levels of salinity and salinity–sodicity stress conditions. Also, its l-TRP use efficiency under salinity–sodicity stress was 5.01% and reported as the most efficient bacterium. Seed inoculation of A. siccitolerans enhanced wheat aerial and root dry matter under salinity–sodicity stress with respect to control by 10.03 and 15.17%, respectively. The study indicates the different effects of salinity–sodicity on indole-3-acetic acid indole-3-acetic acid production and the potential of A. siccitolerans for production of indole-3-acetic acid and enhancing growth of wheat under salinity and salinity–sodicity stress.  相似文献   

6.
7.
The relationships between soil texture, plant growth, and anaerobic microbial activity in two tall-formSpartina alterniflora marshes on Sapelo Island, Georgia, were compared. The soil of one marsh was composed of typical silt-clay-sized particles; the soil of the other marsh consisted of >90% sand-sized particles. The two soils supported similar biomasses ofS. alterniflora, however, plants were taller and more robust in the silt-clay-soil than in the sand soil. Total microbial adenosine triphosphate concentrations in the silt-clay and sand soils averaged 5.71 and 1.64 μg per cm3, respectively. Seawater slurries of both soils exhibited potential for microbial sulfate reduction, methanogenesis, and glucose fermentation; rates for the processes averaged 2.03 and 0.33 nmol S-cm3 per h; 1.20 and 0.87 μmol CH4 per cm3 per h; and 0.04 and 0.12 per min (rate constant) for the sand and silt-clay soils, respectively.  相似文献   

8.
Sodium (Na+) in poor quality irrigation water participate in ion-exchange processes results in the displacement of base cations into solution and a raised concentration in groundwater. Knowledge of the rate of decrease of nutrients from soils resulting from poor water quality application is essential for long-term planning of crop production while minimizing the impact on groundwater quality. In this study, we examined the effect of sodium adsorption ratio (SAR) of irrigation water on nutrients leaching and groundwater quality in columns of sandy soil. Three types of irrigation waters at three NaCl–CaCl2 solutions with the following levels of SAR (5, 15, and 30) were synthesized in laboratory. With the application of solutions, exchange occurred between solution Na+ and exchangeable cations (Ca2+, Mg2+, and K+), resulting in the displacement of these cations and anions into solution. Increasing the level of SAR from 5 to 15 and 30 resulted in increase in the average exchangeable sodium percentage (ESP) of the soil from 10.4 to 20.3, and 32.5, respectively. Adverse effect of high Na+ concentration in the solutions on raising ESP was less pronounced in solution having low SAR. Leaching of Ca2+, Mg2+, K+, and P from soil with the application of solutions represents a significant loss of valuable nutrients. This sandy soil showed the high risk for nutrients transfer into groundwater in concentrations exceeding the groundwater quality standard. Irrigation with poor quality water, which is generally more sodic and saline than regional groundwater, increases the rate of sodification and salinization of shallow groundwater.  相似文献   

9.
Six wheat varieties (SARC-1, SARC-2, SARC-3, SARC-4, LU26S and Punjab-85) were planted in the field to evaluate their comparative performance under saline conditions. LU26S appeared the most salt-tolerant variety and gave the highest grain weight due to its low Na+ uptake, high K+/Na+ ratio, higher dry weight of shoots and spikes and better grain development. Better exclusion of Na+ and other ions from the leaves of salt-tolerant variety LU2 6S could also be a reason for its ability to maintain a higher grain weight in the saline soil. Punjab-85 appeared the most saltsensitive variety as its dry weight of main shoots and spikes were also found to be the lowest. High Na+ uptake, lower K+/Na+ ratio, lower dry weight of main shoots and spikes and lower 100 grain weight were the main reasons for saltsensitivity in Punjab-85. Dry weight of shoots, spikes and grain weight of SARC-3 under saline soil conditions was almost similar to the salt-sensitive variety Punjab-85 and could be classified as salt-sensitive. Flag leaf area decreased drastically due to salt stress in all the varieties and this could be a major cause for low yield. There was however, a very low linear correlation between the flag leaf area and the grain weight in pooled data for all the six wheat varieties.  相似文献   

10.
Soil salinization is an environmental problem having significant impacts on the soil–water–plant system. This problem is more frequent in coastal areas due to seawater intrusion into the land. Assessing the soil salinization is a critical issue for the agricultural areas situated in the Mediterranean basin. This paper examines the deterioration of soil quality in the cultivated land of a Mediterranean site (Agoulinitsa district—West Greece). Soil samples were collected in both pre-irrigation and post-irrigation seasons. Electrical conductivity (EC), pH and the ions Br?, Ca2+, Cl?, F?, K+, Li+, Mg2+, Na+, NH4 +, NO2 ?, NO3 ?, PO4 3? and SO4 2? were determined by the 1:2 (soil/water ratio on weight basis) method. The salts which were present in both seasons in the soils of the area studied are KCl, MgCl2, NaCl, CaSO4 and K2SO4. The wide spatiotemporal variation of EC in the cultivated land in both seasons demonstrates that soil salinity is controlled mainly by seawater intrusion and anthropogenic factors such as the application of salt-rich water which is directly pumped from the drainage ditches. Seawater intrusion provides the affected soil with elevated contents of Ca2+, Cl?, K+, Mg2+, Na+ and SO4 2?. Classification of the soils by using criteria given by the literature is discussed. Practices to prevent, or at least ameliorate, salinization in the cultivated land of Agoulinitsa district are proposed.  相似文献   

11.
Cutin and suberin structural units might be stabilized in subsoils and contribute to the aliphatic structures observed in stabilized soil organic matter (SOM). We studied their dynamics in subsoils by measuring the concentrations and 13C contents of cutin and suberin markers in soil profiles under wheat (C3) and after 9 years of maize cropping (C4 plant). Alkandioic acids were considered as markers for roots, mid-chain hydroxy acids were only present in shoots and ω-hydroxy acids were identified in both roots and shoots. The diacid concentrations greatly increased below the ploughed layer after 9 years of maize cropping, possibly due to a higher root density of maize compared to wheat or to a faster turnover of fine roots and increased exudation of maize compared to wheat. From 0-75 cm, 9 years of maize cropping did not affect the distribution of shoot biomarkers but increased their concentrations. By contrast, below 75 cm, the shoot marker concentrations drastically decreased from the wheat control to the 9 year maize soil. The difference of δ13C observed for shoot markers was always lower than that observed for ω-hydroxy acids, and below 15 cm, it was close to that observed for SOC. The difference in δ13C of diacids was much more variable along the profile. Since the concentrations of the different markers were not at equilibrium, it was not possible to estimate their turnover. This study suggests several caveats for the use of molecular markers of roots and shoots to study the dynamics of SOM in deep soils: the higher heterogeneity compared to the ploughed layer, the presence of long history record of past vegetation that may hinder the short time scale changes tracked with the 13C isotope technique, and the difficulty in evaluating root inputs in the soil systems.  相似文献   

12.
High levels of antimony have been frequently detected in some industrial sites. This study evaluated the adverse effects of antimony (Sb) on the surface-casting activity of earthworm and the early growths of some important crop plants. Asian earthworm (Perionyx excavates) and four crop plant species (Chinese cabbage, Brassica campestris; wheat, Triticum aestivum; cucumber, Cucumis sativus; and mung bean, Phaseolus radiatus) were exposed to soil antimony in laboratory. Survival, abnormality and the surface-casting activity of earthworm were monitored. Negative effects of the survival and the morphological abnormalities were observed in the P. excavates exposed to Sb. The earthworm activity, expressed as surface cast production, was significantly inhibited with elevated Sb levels. In terms of plant assay, the growth of all test plants was adversely affected in Sb-contaminated soils, and the content of Sb in plant tissues increased with increasing Sb concentration in soil. The results demonstrate that elevated Sb concentrations in soil would inhibit the early growth of crop plants, and the earthworm casting activity that is a key function of earthworm to increase soil fertility. This is the first report on the negative effect of Sb on the casting activity of earthworm as well as the growth of test plant species selected.  相似文献   

13.
A simple, unifying approach to classifying quantitatively the susceptibility of catchment soils and surface waters to acidification is suggested. In areas subject to a strong maritime influence, such as the UK and substantial parts of NW Europe, wherever soil mineral weathering rates are low and soils are unfertilised, atmospherically derived base cations of maritime origins have a greater effect than those derived from biogeochemical weathering on the exchangeable soil base cations. This is directly reflected in the relative base cation concentrations of the associated drainage waters, which become increasingly Na-dominated. Using 10 sub-catchments of the River Dee in north-eastern Scotland, it is shown here that the extent of Na dominance, the ratio of Na+ to ΣNa++Ca2++Mg2+, at any point in a river provides a quantitative index of the upstream weathering rate and thus of the susceptibility of the river concerned to acidification under diverse flow conditions. Data from a further 58 sub-catchments from the same river system, and from 4 other catchments from around Scotland, were used to validate this theory.  相似文献   

14.
Tillage systems affect soil properties, crop growth and nutrient uptake under various agro-ecological conditions. The uptake of water and nutrients are largely dependent on the root systems of wheat (Triticum aestivum L.) and rice (Oryza sativa L.). The application of manure has direct influence on the nutrient uptake by the crop plants. A 2 year field experiment was conducted to evaluate the impact of tillage and farm manure on root growth by measuring the root length density on a sandy clay loam (Typic calciargid soil). Three tillage systems were used; (i) minimum tillage (MT), (ii) deep tillage (DT) and (iii) conventional tillage (CT). Three farm manure levels were used; (i) FM0 (only chemical fertilizers), (ii) FM15 (farm manure at 15 Mg ha?1) and (iii) FM30 (farm manure at 30 Mg ha?1). The incorporation of farm manure into soil markedly improved the root length density (RLD) of both wheat and rice crops. For wheat, the application of FM30 increased RLD by 16% and 9% in cases of deep tillage and minimum tillage, respectively. For rice, the increase in RLD at the same farm manure rate (FM30) was 13% and 17%, during first and second year, respectively. Averaged across tillage, the trend of RLD for both wheat and rice was DT > CT > MT. The incorporation of FM has increased the uptake of N, P and K significantly (P < 0.05), thereby increasing the agronomic parameters. The manure may be used to ameliorate the deleterious effects of tillage for sustainable crop yield.  相似文献   

15.
青藏公路沿线土壤微生物数量变化及其影响因素研究   总被引:4,自引:3,他引:1  
以青藏公路沿线土壤为研究对象, 研究了土壤可培养微生物数量的变化特征及影响因子. 结果表明: 青藏公路沿线土壤可培养微生物数量为0.77×106~2.44×107CFU·g-1dw; 沿青藏公路从南(申格里贡山)到北(西大滩), 土壤可培养细菌与真菌数量表现为先迅速减少, 然后渐趋平缓; 可培养放线菌数量先减少后增加; 土壤总氮、 有机碳和含水量逐渐降低, 而pH值逐渐升高. C/N比率与真菌/细菌比率变化趋势相似, 均为先增加后减少. 土壤可培养微生物数量与理化因子的相关性分析结果表明: 青藏公路沿线土壤微生物数量主要受纬度和土壤理化性质的影响, 表现为微生物数量与纬度和pH值显著负相关, 而与总氮、 有机碳和含水量极显著正相关.  相似文献   

16.
Questions concerning the influence of soil type and crop cover on the fate and transport of nitrate (NO3) were examined. During a growing season, soils derived from glacial material underlying either corn or soybeans were sampled for levels of NO3 within the pore water. Measured levels of NO3 ranged from below detection limit to 14.9 g NO3 per kilogram of soil (g/kg). In fields with the same crop cover, the silty-clayey soil exhibited a greater decrease in NO3 levels with depth than the sandier soil. Crop uptake of NO3 occurs within the root zone; however, the type of crop cover did not have a direct impact on the fate or transport during the growing season. The soils underlying soybeans had an increase in NO3 levels following harvest, suggesting that the decomposition of the soybean roots contributed to the net gain of NO3 in the shallow soil. For all of the soil types, conditions below 100 cm are conducive for microbial denitrification, with both a high water saturation level (>60%) and moderate organic carbon content (1–2%). At depths below 100 cm, temporal differences in NO3 levels of over a magnitude, up to a 95% reduction, were recorded in the soil units as the growing season progressed. Physical properties that control the transport of NO3 or denitrification have a larger influence on NO3 levels than crop type.
Eric W. PetersonEmail:
  相似文献   

17.
The effect of sulphates on the soil stabilisation using mineral additives such as lime, cement and fly ash has been reported by several researchers. The effect of sodium sulphate (Na2SO4) (0–6% by dry weight of soil) on the behaviour of the grey clayey soil (GS) and red clayey soil (RS) stabilised with lime (L) (0–8%), natural pozzolana (NP) (0–20%) and with a combination of lime-natural pozzolana (L–NP) was investigated. The soil specimens were subjected to testing of direct shear strength after 7, 30, 60 and 120 days of curing period. In the absence of Na2SO4, the results show that both clayey soils can be successfully stabilised with L or with a combination of L–NP, which substantially increases their shear strength and produces high values of shear parameters. However, at short curing period and for any content of Na2SO4, a further increase in shear strength and shear parameters is observed. Moreover, after 30 days of curing, the RS specimens stabilised with L or with NP alone are altered when the Na2SO4 is greater than 2%, whereas the GS specimens are not altered. However, the alteration of RS specimens is little when the L and NP are combined on curing with a high content of Na2SO4. Generally, the effect of Na2SO4 on both stabilised clayey soils depends on the curing time, percentage of additives used and their type, mineralogical composition of stabilised soils and Na2SO4 content.  相似文献   

18.
A detailed water quality analysis was carried out in the quaternary aquifer system of the marginal alluvial plain (Ganga Plain) in Bah Tahsil, Agra district, India. The electrical conductivity of 50 samples each from dug wells, hand pumps and tube wells was analysed for the study of salinity levels in shallow, intermediate and deep aquifers. Out of 50, 20 samples of each were also analysed for other chemical constituents such as Na+, K+, Cl, Fand TDS. The analyses show drastic changes in the salinity levels of shallow, intermediate and deep aquifers. The deep aquifers are more saline compared to the shallow and intermediate aquifers. On the contrary, the concentration of chemical constituents such as Na+, K+, Cl and Fwas more in the shallow aquifers compared to the deep aquifers. Moreover, there is an indication that the salinity and concentration of the above chemical constituents also escalate with time in each aquifer. The chemical constituents such as Na+, K+, Cl, F and TDS range from 51 to 165 mg/l, 1 to 14 mg/l, 224 to 1,459 mg/l, 0 to 1.5 mg/l and 750 to 2,650 mg/l, respectively. Over a 3-year period, the salinity levels have sharply increased and the average F level has increased by 0.1–0.3 mg/l. An attempt has been made here to discuss the factors causing the variation and escalation of chemical constituents and salinity in the water of the three aquifers.  相似文献   

19.
Screening out plants that are hyper-tolerant to certain heavy metals plays a fundamental role in remediation of mine tailing. In this study, nine dominant plant species growing on lead–zinc mine tailing and their corresponding non-mining ecotypes were investigated for their potential phytostabilization of lead. Lead concentration in roots of these plants was higher than in shoots, and the highest concentrations of lead were found in Athyrium wardii: 15542 and 10720 mg kg−1 in the early growth stage (May) and vigorous growth stage (August) respectively, which were 426 and 455 times higher than those of the non-mining ecotypes. Because of poor lead translocation ability, lead accumulation in roots reached as high as 42 mg per plant. Available lead in the rhizosphere soils of A. wardii was 310 mg kg−1, which was 17 times higher than that of the non-rhizosphere soil. Lead concentrations of roots for the nine mining ecotypes were positively correlated with available lead in the rhizosphere soils, whereas a negative correlation was observed in the non-mining ecotypes. These results suggest that A. wardii was the most promising candidate among the tested species for lead accumulation in roots, and it could be used for phytostabilization in lead polluted soils.  相似文献   

20.
利用GC-MS对西北干旱区-半干旱区兰州兴隆山森林区典型植被与现代土壤样品中可抽提的类脂物进行了系统分析,检测出包括正构烷烃和α正构脂肪酮等一系列类脂物分子化石。在未进行族分离的情况下,检出兴隆山现代森林木本植物的正构烷烃以C27或C29为主峰,草本植物则以C31为主峰;  土壤样品中均保留有很强的、几乎均势的C27,C29和C31信号; α正构脂肪酮具有明显的奇碳优势,植物中以C23,C25或C29为主峰,土壤样品以C27或C29为主峰;  其反映的信息是植被与微生物共同作用的结果。本研究为理解现代土壤和古土壤中类脂物所指示的植被信息、进一步探讨类脂物分子在植被(有机质)-微生物-土壤-湖泊沉积体系中存在与相互转换关系这一基础理论问题提供了科学资料。同时,为分子化石分析方法的改进和不同处理过程所得数据之间的对比和科学解释提供资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号