首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Open burning of scrap (bicycle, motorcycle, car and truck) tyres (OBST) was simulated in the laboratory to investigate their impact on the ambient air quality. The tyre samples were burnt in combustion chamber, and gaseous pollutants (CO, NO2 and SO2) emitted were quantified, while concentrations and elemental compositions of emitted total suspended particulates (TSP) were determined. Emission level of SO2 from all the tyre samples exceeded USEPA allowable (156.74 µg/m3) limit. CO due to car and truck tyres exceeded USEPA allowable (10,285.71 µg/m3) limit, while NO2 concentration was below the allowable limit (56.33 µg/m3) only in bicycle tyre. 25% of all the gaseous pollutants emitted are within the Air Quality Index range of 101–150. TSP concentrations from all the tyre samples were higher than the Federal Ministry of Environment standard (250 µg/m3) for ambient TSP. There is strong correlation (R) of 0.885, 0.949 and 0.802 among all the gaseous (CO/NO2, CO/SO2 and NO2/SO2) pollutants, respectively, while the highest (0.999) and lowest (0.079) positive correlations were observed between Mg and Mn as well as Cd and Zn, respectively. The results of this study show that OBST emits hazardous pollutants, which pose serious threat to human health and environment.  相似文献   

2.
Air dispersion modeling by was recently conducted to predict the incremental ground level and inplant concentrations of toxic organic chemicals due to stack and fugitive emissions from Sama Jaya Free Industrial Zone (SJFIZ), Kuching, Sarawak, Malaysia. Simulations of organic air pollutants emitted from industrial facilities in SJFIZ from years 1996 to 2001 were carried out in September 2004 by members of Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS). The results indicated that there were negligible amount of maximum incremental ground level concentrations of less than 3×10?2 μg/m3 for 365-day average, and less than 18×10?2 μg/m3 for 24 h. average. For in-plant maximum incremental concentrations, it is found that the simulated results were much lower than TWA values, except xylene. The predicted in plant concentration of xylene was 119.21 (parts per million) ppm as compared to ACGIH TLV-TWA of 100 ppm approximately 19% higher than ACGIH recommended values. From this study, it was concluded that both nearby population and in plant workers were not potentially at risk to exposing organic chemicals far lower than the threshold limit levels set by ACGIH.  相似文献   

3.
The United States is one of the world's leaders in electricity production, generating about 4116 billion kWh in 2021, of which coal accounted for 21.8% of the total. This study applies an integrated approach using both terrestrial and satellite data to specifically examine emissions from coal-fired power plants and its spatial extent. The study also highlights the effectiveness of government policies to reduce emissions. It was found that emission of pollutants from the country's energy sector has been steadily declining, with annual emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) decreasing from the US electric power sector between 1990 and 2020 by 93.4% and 84.8%, respectively, and carbon dioxide (CO2) by 37% between 2007 and 2020. Although overall emissions from coal-fired power plants are declining, some individual plants have yet to install environmental equipment to control emissions. According to US government data, major emitters of SO2, NOx, and CO2 in the US are the Martin Lake power plant in East Texas, the Labadie power plant near St. Louis, Missouri, and the James H Miller Jr plant near Birmingham, Alabama. This study also integrates TROPOMI satellite data to detect point emissions from individual power plants. While the highest levels of measured pollutants were over the country's major cities and areas of fossil fuel extraction, TROPOMI could clearly distinguish the pollution caused by power plants in more rural areas. Although the US has made great strides in reducing emissions from coal-fired power plants, these plants still represent a major source of pollution and remain a major concern. Totally eliminating coal as a power source will be difficult with the higher power demands resulting from the transition to electric automobiles.  相似文献   

4.
Reverse dispersion modelling was employed to quantify sulphur dioxide (SO2) and nitrogen dioxide (NO2) emissions from brick firing clamp kilns and spontaneous combustion from a coal discard dump. Reverse dispersion modelling technique integrates ambient monitoring and dispersion simulation to calculate actual emission rates from an assumed rate of 1 g per second (g/s). Emission rates and emission factors were successfully quantified for SO2, but not for NO2, due to the influence of external sources and the complexity regarding the varying proportion of nitrogen oxides released from the kiln. Quantified emission factor for clamp kiln firing ranged from 1.91–3.24 g of SO2 per brick fired and 0.67–1.14 g of SO2 per kilogram of bricks fired. The variation in SO2 emission factors was linked to high variability in energy input. The source configuration input to the dispersion model, assumed to represent the kiln, was changed from a volume source to a more effective “bi-point” source situated at the top of the kiln, with buoyancy calculated from the carbon combustion rate. In addition, SO2 emission rate for spontaneous combustion from the discard dump was quantified as 0.35 g/s. 274 tons of discard material was estimated to burn annually, assuming that the emission rate is consistent over a year. Consequently, the reverse dispersion modelling and the elevated “bi-point” source technique may be considered a novel approach for quantifying emissions from combustion of materials or mixture of materials where knowledge of source parameters is limited.  相似文献   

5.
Based on data from ground-based air quality stations, space–time variations of six principal atmospheric pollutants, such as particulate matter (PM2.5 and PM10) and gas pollutants (SO2, NO2, СО, and O3), obtained from January 1, 2014 to December 31, 2017 in the city of Lanzhou, have been studied. Average total concentrations of PM2.5 and PM10 were 53.2?±?26.91 and 124.54?±?82.33 µg/m3, respectively; however, the results showed that in 75.53% and 84.85% days, concentrations of these pollutants exceeded Chinese National Ambient Air Quality Standard and in 100% days exceeded World Health Organization guidelines standards. Daily mean values of aerosol optical depth and Ångström exponent based on data, received by satellite Moderate Resolution Imaging Spectroradiometer, show a broad range of values for aerosol optical depth (from 0.018 to 1.954) and Ångström exponent (from 0.003 to 1.8). Results of principal components analysis revealed three factor loadings. Thus, Factor 1 has the relevant loadings for PM2.5, PM10, CO, SO2, and NO2 (36%) and closely associated with transport emissions and industrial sources, which contribute to air pollution in Lanzhou. Factor 2 was heavily loaded with temperature and visibility (16.94%). Factor 3 consisted of relative humidity (14.11%). Cluster analysis revealed four subgroups: cluster 1 (PM2.5, NO2, SO2), cluster 2 (CO), cluster 3 (PM10) and cluster 4 (relative humidity, visibility, temperature, O3, wind speed), which were compliant with results, obtained from principal components analysis. Positive correlation was found among all pollutants, other than O3. According to processed backward trajectories obtained by Hybrid Single-Particle Lagrangian Integrated Trajectory model, it was found that movement of air masses occur from north, northwest, and west directions—the location of principal natural sources of aerosols.  相似文献   

6.
People living in the urban area and the surrounding suburban area have disparities in exposure and health risks due to different levels of ambient air pollutants. The main objective of this study is to investigate the concentrations, seasonal variations, and related health risks of ambient air pollutants (PM10, NO2, and SO2) in urban and suburban areas of Ningbo, China. The results showed that the average PM10, NO2, and SO2 concentrations in the urban area were 85.2, 49.3, and 37.4 μg/m3, which were 1.13, 1.25, and 1.41 times the values of the suburban area during the period of March 2009 to February 2010. For the potential health risk analysis, the residents have been divided into four age categories namely, infants, children (1 year), children (8–10 years), and adults. The analysis took into account age-specific breathing rates, body weights for different age categories. The results showed that the potential health risks to respiratory disease for all age categories living in urban area were higher than those in suburban area.  相似文献   

7.
《Applied Geochemistry》1998,13(2):197-211
The small Mediterranean riverine system of the Litheos river, which flows through the city of Trikala, and its drainage area are subjected to pollution from point and non point sources,which results in poor quality of surface waters. The pollution sources include urban activities, agriculture, industrial activities, handicrafts and traffic. The concentration levels and the geochemical behaviour of nutrients, trace metals and organic pollutants were studied during the period 1991–1992, in a project supported by the Municipality of Trikala. The simultaneous existence of several polluting sources leads to significant variations in the concentrations and distributions of main pollutants, which are elevated in the neighbourhood of polluting activities in various parts of the river (NO3 above the city, NH3, NO2 and detergents near central rainwater collector, into the city, P04 below the city, near the waste water treatment plant, PAI-Is and metals in another river branch in the ‘industrial’ zone of the city). The appearance of concentration maxima of various pollutants in various parts of the river indicates environmental problems in the whole length of the river. The water quality is significantly influenced and in most cases is unsuitable for human consumption. The mean values of the main pollutants in Litheos (NO3 4.0 mg N/1, NH3 0.23 mg N/1, NO2 0.10 mg N/1, P 0.37 mg P/1, Cu 7.1 μg/l, Pb 4.8 μg/l, Zn 3.9 μg/l, Ni 12.8 μg/l, Cr 3.5 μg/l) characterize Litheos as a moderately polluted river, but the observation of eutrophication phenomena and the appearance of some high concentrations of heavy metals and/or organic pollutants in certain parts of the river reveal that a serious effort must be made in order to avoid further deterioration of Litheos water quality.  相似文献   

8.
Atmospheric dust is considered to be the major cause of poor air quality due to its contribution to high particulate levels, but their interaction with the acidic gases helps in controlling the level of SO2 and NO2 through ambient neutralization reactions. In the present study, the interaction of acidic gases such as SO2 and NO2 with alkaline dust was investigated during October, 2013–July, 2014 at a site named as Babarpur located at the Trans-Yamuna region of Delhi. The concentration of SO2 ranged from 10 to 170 μg/m3 with an average of 36 μg/m3 while that of NO2 ranged from 15 to 54 μg/m3 with an average of 26?±?8 μg/m3. The results were observed to be well within the National Ambient Air Quality Standard (NAAQS) limits prescribed by the Central Pollution Control Board (CPCB). The average concentrations of SO2 during day and night time were recorded as 31?±?18 and 43?±?53 μg/m3 respectively while the mean concentrations of NO2 during day and night time were recorded as 26?±?7 and 27?±?12 μg/m3 respectively. A positive correlation between SO42? and NO3? was also observed indicating their secondary aerosol formation. In aerosol phase, average concentrations of SO42? during day and night time were 3.9?±?0.3 and 6.5?±?2.3 μg/m3 respectively while that of NO3? were 9.5?±?1.5 and 7.3?±?0.5 μg/m3 respectively. Molar ratios of Ca2+/SO42?, NH4+/SO42?, and NH4+/NO3? were observed as 8, 5, and 1.7 during daytime and 1.5, 0.4, and 0.8 during nighttime respectively. Such molar ratios confirmed high concentrations of sulphate (SO4)2? and low concentrations of nitrate (NO3?) during night time, thereby indicating different pathway of aerosol formation during day and night time. Surface morphology and elemental composition of aerosol samples showed various oval, globular, and platy shapes where the diameter varied from few nm to ~5 μm depending on their precursors. There were certain shapes like grossularite, irregular aggregate, grape-like, triangular, and flattened which indicate the crustal origin of aerosols and their possible role in SO2 and NO2 adsorption.  相似文献   

9.
Due to rapid economic growth of the country in the last 25 years, particulate matter (PM) has become a topic of great interest in China. The rapid development of industry has led to an increase in the haze created by pollution, as well as by high levels of urbanization. In 2012, the Chinese National Ambient Air Quality Standard (NAAQS) imposed ‘more strict’ regulation on the PM concentrations, i.e., 35 and 70 μg/m3 for annual PM2.5 and PM10 in average, respectively (Grade-II, GB3095-2012). The Pearson’s correlation coefficient was used to determine the linear relationship of pollution between pollution levels and weather conditions as well as the temporal and spatial variability among neighbouring cities. The goal of this paper was to investigate hourly mass concentration of PM2.5 and PM10 from June 1 to August 31, 2015 collected in the 11 largest cities of Gansu Province. This study has shown that the overall average concentrations of PM2.5 and PM10 in the study area were 26 and 66 μg/m3. In PM2.5 episode days (when concentration was more than 75 μg/m3 for 24 hrs), the average concentrations of PM2.5 was 2–3 times higher as compared to non-episode days. There were no observed clear differences during the weekday/weekend PM and other air pollutants (SO2, NO2, CO and O3) in all the investigated cities.  相似文献   

10.
A vegetable- and meat-canning facility located in the karst of southeastern Minnesota disposes ≈2.85×105 m3 yr?1 of wastewater by spray irrigation of an 83.7-ha field located atop the local groundwater divide. Cannery effluent contains high levels of chloride and nitrogen (organic and ammonia), in excess of 7000 mg/l and 400 mg/l, respectively. Nitrate-nitrogen concentrations are generally < 5 mg/l. Agricultural, domestic, and municipal sources of chloride and nitrate are common in the region, and water supplies frequently exceed the drinking-water limit for nitrate-nitrogen of 10 mg/l. Fifty-two area wells and thirteen surface-water locations were sampled and analyzed for five ionic species, including: chloride (Cl), nitrate-nitrogen (NO3-N), sulfate (SO4), nitrite-nitrogen (NO2-N), and phosphate (PO4). Two distinct chloride plumes flowing outward from the groundwater divide were identified, and 65% of the wells sampled had nitrate-nitrogen concentrations in excess of 10 mg/l. The data were divided into two groups: one group of samples from wells located near the canning facility and another group from outside that area. A correlation coefficient of R2= 0.004 for Cl vs. NO3-N in the vicinity of the irrigation fields indicates essentially no relationship between the source of Cl and NO3. In areas of agricultural and domestic activities located away from the cannery, an R2 of 0.54 suggests that Cl and NO3 have common sources in these areas.  相似文献   

11.
In this study, AERMOD dispersion model has been applied for predicting the values of ambient concentrations of NO2 emissions due to the stacks of fourth gas refinery located in South Pars Gas Complex in Asaluyeh, Iran. First, the values of NO2 emissions from the stacks and the amounts of ambient concentrations of NO2 in nine monitoring stations have been measured in four seasons in 2013. Then, dispersion of NO2 emissions has been predicted by using AERMOD model in the region with the domain area of 10 × 10 km2, in average times of 1 h. Finally, the simulated and observed values of ambient NO2 concentrations in the nine receptors have been compared. Comparison of 1-h concentrations of the observed and predicted results with the international ambient standard levels shows that NO2 concentrations are higher than the standard value. The results show that AERMOD model can be used effectively for predicting the amounts of pollutants’ concentrations in the study area.  相似文献   

12.
Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM2.5, PM10, SO2, NO2, CO and O3, were collected to investigate the spatial and temporal variation in the Beijing–Tianjin–Hebei (BTH) region during 2013–2016 and to explore the relationships between atmospheric pollutants and meteorological variables using quantile regression model (QRM) and multiple linear regression model (MLRM). The results show that BTH region has experienced significant air pollution, and the southern part generally has more severe conditions. The annual average indicates clear decreasing trends of the particulate matters, SO2 and CO concentrations over the last 4 years and slight increasing trends of NO2 and O3 in several cities. The seasonal and monthly characteristics indicate that the concentrations of five species reach their maxima in the winter and their minima in the summer, whereas O3 has the opposite behaviour. Finally, the pseudo R2 values show that the QRMs have the best performance in the winter, followed by spring, fall, and summer. Specifically, all the meteorological factors have significant impacts on air pollution but change with pollutants and seasons. The MLRM results are generally consistent with the QRM results in all seasons, and the inconsistencies are more common in the fall and winter. The results of this research provide foundational knowledge for predicting the response of air quality to climate change in the BTH region.  相似文献   

13.
《Applied Geochemistry》1997,12(4):507-516
Concentrations of electron acceptors, electron donors, and H2 in groundwater were measured to determine the distribution of terminal electron-accepting processes (TEAPs) in an alluvial aquifer having multiple contaminant sources. Upgradient contaminant sources included two separate hydrocarbon point sources, one of which contained the fuel oxygenate methyl tertbutyl ether (MTBE). Infiltrating river water was a source of dissolved NO3, SO4 and organic carbon (DOC) to the downgradient part of the aquifer. Groundwater downgradient from the MTBE source had larger concentrations of electron acceptors (dissolved O2 and SO4) and smaller concentrations of TEAP end products (dissolved inorganic C, Fe2+ and CH4) than groundwater downgradient from the other hydrocarbon source, suggesting that MTBE was not as suitable for supporting TEAPs as the other hydrocarbons. Measurements of dissolved H2 indicated that SO4 reduction predominated in the aquifer during a period of high water levels in the aquifer and river. The predominant TEAP shifted to Fe3+ reduction in upgradient areas after water levels receded but remained SO4 reducing downgradient near the river. This distribution of TEAPs is the opposite of what is commonly observed in aquifers having a single contaminant point source and probably reflects the input of DOC and SO4 to the aquifer from the river. Results of this study indicate that the distribution of TEAPs in aquifers having multiple contaminant sources depends on the composition and location of the contaminants and on the availability of electron acceptors.  相似文献   

14.
为了研究祁连山大雪山地区大气PM2.5细粒子中可溶性无机离子组分的变化特征, 于2010年7月至2011年7月在祁连山冰川与生态环境综合观测站附近采集46个大气PM2.5的Telfon滤膜样品, 并应用离子色谱对可溶性离子进行了分析.结果显示: 所测样品的阴、 阳离子中, SO42-、 NO-3、 Ca2+和NH+4的质量浓度分别为1.54μg·m-3、 0.38μg·m-3、 0.73μg·m-3和0.22μg·m-3, 累计约占到水溶性离子总量的88%.可溶性离子浓度呈现出春夏季节明显高于秋冬季节的特征, 夏季的浓度最高, 其次是春季、 冬季和秋季. Cl-、 Ca2+、 Na+和Mg2+之间的相关性极高, SO42-和NO-3与大部分阳离子的相关性都很高, 说明大部分硫酸盐是来自于中亚沙尘源区的自然源, 而并非是通过人类活动造成的一次污染物通过二次反应过程得到的. NH+4仅与SO42-通过相关性检验说明, 该地区NH3主要中和了大气中硫酸并生成(NH4)2SO4.该地区的大气环境主要来源于自然源的影响, 但夏季风期间人为污染排放已经不可忽视, 这也得到HYSPLIT后向轨迹模式的计算验证.  相似文献   

15.
Amine post-combustion carbon capture technology is based on washing the flue gas with a solvent that captures CO2. Thus, a small fraction of this solvent can be released together with the cleaned flue gas. This release may cause environmental concerns, both directly and indirectly through subsequent solvent degradation into other substances in the atmosphere. The paper presents the ammonia emission from CO2 capture pilot plant (1 tonne CO2 per day) using 40 wt% aminoethylethanolamine solvent, along with the efficiency of the water wash unit. In addition, the temperature effect of lean amine entering the absorber on ammonia emission was studied. Furthermore, the concentrations of other compounds such as SO2, SO3, NO2, CS2 and formaldehyde were monitored. The literature review on the NH3 emission from a pilot plant using aminoethylethanolamine solvent has not been published. The results show that the main source of ammonia emission is the absorber and that emission (in the range 27–50 ppm) corresponds to typical NH3 release from CO2 capture pilot plant using an amine solvent. The emission of amines and amine degradation products is a complex phenomenon which is difficult to predict in novel solvents, and for this reason the significance of new solvents testing in a pilot scale has been highlighted.  相似文献   

16.
Sediment oxygen uptake and net sediment-water fluxes of dissolved inorganic and organic nitrogen and phosphorus were measured at two sites in Fourleague Bay, Louisiana, from August 1981, through May 1982. This estuary is an extension of Atchafalaya Bay which receives high discharge and nutrient loading from the Atchafalaya River. Sediment O2 uptake averaged 49 mg m?2 h?1. On the average, ammonium (NH4 +) was released from the sediments (mean flux =+129 μmol m?2 h?1), and NO3 ? was taken up (mean flux =?19 μmol m?2h?1). However, very different NO3 ? fluxes were observed at the two sites, with sediment uptake at the upper, river-influenced, high NO3 ? site (mean flux =?112 μmol m?2 h?1) and release at the lower, marine-influenced low NO3 ? site (mean flux =+79 μmol m?2 h?1). PO4 3? fluxes were low and often negative (mean flux =?8 μmol m?2 h?1), while dissolved organic phosphorus fluxes were high and positive (mean flux =+124 μmol m?2 h?1). Dissolved organic nitrogen fluxes varied greatly, ranging from a mean of +305 μmol m?2 h?1 at the lower bay, to ?710 μmol m?2 h?1 at the upper bay. Total dissolved nitrogen and phosphorus fluxes indicated the sediments were a nitrogen (mean flux =+543 μmol m?2 h?1) and phosphorus source (mean flux =+30 μmol m?2 h?1) at the lower bay, and a nitrogen sink (mean flux =?553 μmol m?2 h?1) and phosphorus source (mean flux =+17 μmol m?2 h?1) in the upper bay. Mean annual O∶N ration of the positive inorganic sediment fluxes were 27∶1 at the upper bay and 18∶1 at the lower bay. Based on these data we hypothesize that nitrification and denitrification are important sediment processes in the upper bay. We further hypothesize that Atchafalaya River discharge affects sediment-water fluxes through seasonally high nutrient loading which leads to net nutrient uptake by sediments in the upper bay and release in the lower bay, where there is less river influnces.  相似文献   

17.
In this study, the chemical composition of precipitation was applied as an indicator to study the influence of urbanization on the atmosphere in Qilian County, a northwest city in China. The results showed that the annual mean pH calculated from the concentration of H+ was 7.35 due to alkaline ion neutralization, and Ca2+ had the largest contribution. Ca2+ and SO4 2? were the most abundant ions, accounting for 45 and 17%, respectively, of the total ion mass. The correlation coefficient between SO4 2? and NO3 ? reaching 0.85 in the urban area indicated the same source. The highest concentration of sulfate in spring was probably related to the strong wind in Northwest China, while the concentration of nitrate was the highest in winter suggesting that most of the nitrate originated from coal combustion, not vehicle emission. The application of factor and cluster analysis indicated that 38.43% of the SO4 2? and 16.97% of the NO3 ? in Qilian County were from crustal sources, while 61.5% of the SO4 2? and 83.03% of the NO3 ? originated from the human activities. The back trajectory analysis indicated that the pollution emitted from the surrounding areas also made a great contribution to the local atmospheric quality. Thus the communication and cooperation mechanisms with surrounding cities and improvement of energy consumption efficiency should be strengthened in the next few years.  相似文献   

18.
Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 μ m?3) and yearly (15 μg m?3) mass‐per‐unit‐volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non‐regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size‐limiting cyclone, or with no particle‐size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate‐bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM25 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m?3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co‐occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n‐alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non‐alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires).  相似文献   

19.
Size distribution of PM10 mass aerosols and its ionic characteristics were studied for 2 years from January 2006 to December 2007 at central Delhi by employing an 8-stage Andersen Cascade Impactor sampler. The mass of fine (PM2.5) and coarse (PM10?2.5) mode particles were integrated from particle mass determined in different stages. Average concentrations of mass PM10 and PM2.5 were observed to be 306 ± 182 and 136 ± 84 μg m?3, respectively, which are far in excess of annual averages stipulated by the Indian National Ambient Air Quality Standards (PM10: 60 μg m?3 and PM2.5: 40 μg m?3). The highest concentrations of PM10?2.5 (coarse) and PM2.5 (fine) were observed 505 ± 44 and 368 ± 61 μg m?3, respectively, during summer (June 2006) period, whereas the lower concentrations of PM10?2.5 (35 ± 9 μg m?3) and PM2.5 (29 ± 13 μg m?3) were observed during monsoon (September 2007). In summer, because of frequent dust storms, coarse particles are more dominant than fine particles during study period. However, during winter, the PM2.5 contribution became more pronounced as compared to summer probably due to enhanced emissions from anthropogenic activities, burning of biofuels/biomass and other human activities. A high ratio (0.58) of PM2.5/PM10 was observed during winter and low (0.24) during monsoon. A strong correlation between PM10 and PM2.5 (r 2 = 0.93) was observed, indicating that variation in PM10 mass is governed by the variation in PM2.5. Major cations (NH4 +, Na+, K+, Ca2+ and Mg2+) and anions (F?, Cl?, SO4 2? and NO3 ?) were analyzed along with pH. Average concentrations of SO4 2? and NO3 ? were observed to be 12.93 ± 0.98 and 10.33 ± 1.10 μg m?3, respectively. Significant correlation between SO4 2? and NO3 ? in PM1.0 was observed indicating the major sources of secondary aerosol which may be from thermal power plants located in the southeast and incomplete combustion by vehicular exhaust. A good correlation among secondary species (NH+, NO3 ? and SO4 2?) suggests that most of NH4 + is in the form of ammonium sulfate and ammonium nitrate in the atmosphere. During winter, the concentration of Ca2+ was also higher; it may be due to entrainment of roadside dust particles, traffic activities and low temperature. The molar ratio (1.39) between Cl? and Na+ was observed to be close to that of seawater (1.16). The presence of higher Cl? during winter is due to western disturbances and probably local emission of Cl? due to fabric bleaching activity in a number of export garment factories in the proximity of the sampling site.  相似文献   

20.
Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 μM. The propagation of an internal wave carrying water from ≈100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80–90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0–20 μM during the dry summer months. Nitrate in Azevedo Pond increased to over 450 μM during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m?2 d?1 for the entire Elkhorn Slough and 1 mmol NO3 m?2 d?1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO3 flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号