首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
The objective of this study was to explore the extent of 2,4,6-trinitrotoluene synthetic solution and red water mineralization by comparing conventional direct ozonation and multi-stage ozonation-biological treatment process. The alkaline hydrolysis was used for remediation 2, 4, 6-trinitrotoluene and red water at pH = 10.9. Nevertheless, the hydroxyl radicals would be generated by ozone decomposition with ozone dose of 0.177 g/L. The samples were subjected to chemical oxygen demand and total organic carbon analysis to monitor pollutants removal. The rate of 2, 4, 6-trinitrotoluene and red water pollutants degradation were quantified using high performance liquid chromatography. 2, 4, 6-trinitrotoluene synthetic solution resulted 55.5 % chemical oxygen demand removal by 3 h direct ozonation. Following direct ozonation the biological treatment twenty four hours chemical oxygen demand reached 98.9 % and 98.7 % removal using humic acid and river water 1 % ( v/v) inoculation singly and respectively. Conventional direct ozonation showed non significant change in total organic carbon degradation. While on using multi-stage ozone-biological treatment process where humic acid and/or river water were used as inoculums singly and respectively, total organic carbon fulfilled 73 % and 98.3 % removal. The process was one hour direct ozonation and followed by three days multi-stage ozone-biological treatment. In multi-stage ozone-biological treatment process, ozonation was effective to decompose total organic carbon and to produce biodegradable dissolved organic carbon easily removed by ozone oxidation up to 98.3 % in 2,4,6-trinitrotoluene synthetic solution. Pollutants removal achieved 99 % in authentic red water effluent using river inoculation 1 % (v/v) in 5 days. Nuclear Magnetic Resonance and Fourier Transformation Infra Red methods were performed to confirm types of pollutants content in red water.  相似文献   

2.
A large portion of water is consumed during various textile operations thereby discharging wastewaters with pollutants of huge environmental concern. The treatment of such wastewaters has promising impact in the field of environmental engineering. In this work, Fenton oxidation treatment was engaged to treat simulated textile wastewater. Box–Behnken design and response surface methodology were employed to optimize the efficiency of Fenton process. Iron dose, peroxide dose and pH were considered as input variables while the responses were taken as chemical oxygen demand and color removal. A total of 17 experiments were conducted and analyzed using second-order quadratic model. The quadratic models generated for chemical oxygen demand and color removal efficiencies were validated using analysis of variances, and it was found that the experimental data fitted the second-order model quite effectively. Analysis of variances demonstrated high values of coefficient of determination (R 2) for chemical oxygen demand and color removal efficiencies with values of 0.9904 and 0.9963 showing high conformation of predicted values to the experimental ones. Perturbation plots suggested that the iron dosage produced the maximum effect on both chemical oxygen demand and color removal efficiencies. The optimum parameters were determined as Fe2+ dose—550 mg/L, H2O2 dose—5538 mg/L, pH—3.3 with corresponding chemical oxygen demand and color removal efficiencies of 73.86 and 81.35%. Fenton process was found efficient in treatment of simulated textile wastewater, and optimization using response surface methodology was found satisfactory as well as relevant. From the present study, it can also be concluded that if this method is used as pretreatment integrated with biological treatment, it can lead to eco-friendly solution for treatment of textile wastewaters.  相似文献   

3.
Exhausted Reactive dye bath samples of Turquoise Blue, Olive Green and Navy Blue shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. Complete decolorization of the effluent was achieved in 10 min contact time and ozone consumption of 153 mg/ L for Turquoise Blue, 128 for Olive Green and 143 for Navy Blue shades effluents respectively. The corresponding COD removal was 43%, 44% and 43% for the three shades while TOC removal efficiency was 45%, 45% and 40% respectively. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.  相似文献   

4.
Degradation of 4-chloro-2-nitro phenol by ozonation in aqueous solution was studied in a semi batch reactor under constant ozone dosage and variable pH conditions. The effectiveness of the process was estimated based on the degree of conversion of 4-chloro-2-nitro phenol. It was observed that ozonation is more effective at alkaline reaction of medium than other conditions. The degree of conversion achieved (at the first 5 minutes of the process)at pH 9 was 99.64% compared to 99.03% and 77.35% at pH 7 and 3, respectively. Another parameter used to quantify the 4-chloro-2-nitrophenol during ozonation was the pseudo first order rate constant k [min?1]. Results showed that the rate constant of the process was approximately much higher at the alkaline pH compared to acidic ones. A considerable improvement in chemical oxygen demand removal was observed at pH above 7. At pH 9, the reduction in chemical oxygen demand at the end of the process reached 56.9 %. The degree of organically bounded nitrogen conversion to nitrate was higher at pH 3. Of the total organic carbon reduction, 15.89 % was observed at pH 9. The 4-chloro-2-nitro phenol degradation intermediate products were analyzed by mass- spectrometry. The main intermediate product was chlorophenol.  相似文献   

5.
This study focuses on treatment of landfill leachate in column experiments by immobilized Trametes versicolor on polyurethane foam, collected from Nonthaburi landfill site, Thailand. In this study, glucose was used as a co-substrate. The effect of biomass growth on color removal was observed by immobilizing fungi on polyurethane foam. The same immobilized fungi were used for four cycles of 5 days each to find the reuse of fungi. Leachate was diluted to see the effect of organic loading on color removal. At optimum pH of 4 and in 20 days with 3 g/L of glucose, the fungi could decolorize 78 % and 63 % for 5-times dilution and concentrated leachate, respectively, using immobilized fungi after 4 days initial growth. Fungi could also reduce biological oxygen demand and chemical oxygen demand of 52 % and 42 % (with initial biological oxygen demand and chemical oxygen demand of 48,900 and 96,512 mg/L), respectively, with glucose 3 g/L in concentrate leachate and with 4 days initial immobilization of fungi on polyurethane foam. About 1–6% higher color removal was observed on day 20 with 15 days fungi immobilization initially as compared to 4 days immobilization. Higher removal efficiency was observed for the same leachate after dilution due to reduction in organic loading. Addition of co-substrate enhances significantly removal of color, biological oxygen demand and chemical oxygen demand. Chemical oxygen demand removal reached to 0.6 mg/mg of biomass with the co-substrate. Therefore, white rot fungi can be considered as potentially useful microorganisms in landfill leachate treatment.  相似文献   

6.
Continuous upflow anaerobic sludge blanket reactor performs more favorably at the higher organic loading rate than other anaerobic treatment. The treatment of municipal landfill leachate of Shiraz??s city investigated using continuous flow anaerobic reactor and subsequently aerated lagoon. Landfill leachate has chemical oxygen demand of 45,000?C90,000?mg/L and ammonia nitrogen at 1,000?C2,500 and heavy metals that can impact biological treatments. Capacity of anaerobic and aerobic reactors is 10 and 20?L that operated at detention time of 2 and 4?days, respectively. Organic loading rate of upflow anaerobic sludge blanket is between 0.5?C20?g chemical oxygen demand/L/day. Chemical oxygen demand removal efficiencies are between 57?C87, 35?C70 and 66?C94% in the anaerobic, aerobic and whole system, respectively. As the entry, leachate organic loading rate increased from 1 to 20?g/L/day, the chemical oxygen demand removal efficiency reached a maximum of 71% and 84% in the anaerobic reactor and whole system, respectively, at high organic loading rate. Ammonium removal efficiency was about 54% after the aerobic stage.  相似文献   

7.
The influent concentration has a great effect on nutrients removal efficiency in vertical subsurface flow constructed wetland systems, but treatment performance response to different C: N: P ratios in the influent are unclear at present. At the first growing seasons, the effects of the plants present or not, season, the different C: N: P ratio in influent condition and their interaction on treatment performances were studied in the planted or the unplanted wetlands in greenhouse condition. Each set of units was operated at hydraulic loading rates of 40 L/d. Low, medium and high-strength (100, 200, 400 mg/L of chemical oxygen demand or 20, 40, 80 mg/L total nitrogen) synthetic sewage were applied as influent. According to the first growing season results, the average removal efficiencies for the unplanted and the planted wetlands were as follows: chemical oxygen demand (44–58 % and 55–61 % respectively), total nitrogen (26–49% and 31–54 %) and total phosphorus (36–64 % and 70–83 %). The both wetlands system was operated as an efficient treatment system of highest average removal rates of both chemical oxygen demand and total phosphorus when medium-strength synthetic sewage were applied. When high strength synthetic sewage was applied, the planted wetlands usually had a higher nutrients removal rates than the unplanted over the study period. The plants grew well under any high loading treatment over the study period. Anyhow, it also proved that the wetland systems have a good capacity to treat different strength wastewater in greenhouse condition.  相似文献   

8.
Nanofiltration process on dye removal from simulated textile wastewater   总被引:1,自引:1,他引:0  
Dyestuffs removal from industrial wastewater requires special advanced technologies, since dyes are usually difficult to remove by biological methods. In this study nanofiltration process was used for removal of different dyestuffs from solutions. The rate of dye removal by spiral wound nanofiltration membrane in film thin composite MWCO=90 Dalton, was evaluated for four classes of dyes acidic, disperse, reactive and direct in red and blue dyes medium. Dye absorbance was measured by spectrophotometric method (2120 Standard Method 1998). Effects of feed concentration, pressure and total dissolved solids concentration were also studied. Results showed that increasing dye concentration lead to higher color removal up to 98 % and at different pressures for acidic and reactive blue were up to 99.7 %. Different types of dyes had no effect on dye removal and permeate flux. During 2 h. of the operation time, permeate flux decline was increased. Permeate fluxes for different types of red dyes were from 16.6 to 12.6 (L/m2/h.) and for blue dyes were from 16.6 to 10.45 (L/m2/h.). Presence of sodium chloride in dye solutions increased dye rejections nearby 100 %. Chemical oxygen demand removal efficiencies for reactive blue, disperse blue, direct and disperse red dyes were also approximately 100 %.  相似文献   

9.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   

10.
This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.  相似文献   

11.
In this study, kinetics of biological carbon, nitrogen, and phosphorous removal from a synthetic wastewater in an integrated rotating biological contactor-activated sludge system was investigated. The experimental data obtained from varying four significant independent factors viz., hydraulic retention time, chemical oxygen demand for nitrogen to phosphorus ratio, internal recirculation from aerobic to anoxic zone and disks rotating speed were used for the process kinetic modeling. In order to obtain the bioprocess kinetic coefficients, Monod, first-order and Stover?CKincannon models were employed. As a result, Monod and Stover?CKincannon models were found to be the appropriate models to describe the bioprocess in the rotating biological contactor-activated sludge system as the determination coefficient for the first-order model obtained less than 0.79. According to the Monod model, growth yield, microbial decay rate, maximum specific biomass growth rate, and half-velocity constant coefficients were found to be 0.712?g VSS/g COD, 0.008/d, 5.54/d and 55?mg COD/L, respectively. From Stover?CKincannon model, the maximum total substrate removal rate constant and half-velocity constant were determined as 15.2, 10.98, 12.05?g/L?d and 14.78, 7.11, 6.97?mg/L for chemical oxygen demand, nitrogen and phosphorus removal, respectively. The kinetic parameters determined in this study can be used to improve the design and operation of the biological contactor-activated sludge system in full scale.  相似文献   

12.
Pit latrines are the most frequently used sanitation systems in developing countries because of weak infrastructure and poor economic wealth. A modified ventilated improved pit latrine, with a biological filter beneath is proposed to stabilize and to remove the bulk of the nitrogen from the liquid phase. Although the hydraulic loading rate in the proposed biological filter system was calculated to be ca 36 L/m2/d, significantly lower than the rates that are typical applied in standard rate biological filters (in the range of 1000–4000 L/m2/d) used to treat domestic wastewater; the total Kjeldahl nitrogen and chemical oxygen demand concentrations are significantly higher in faecal sludge, namely 3–5 g /L and 20–50 g /L, respectively compared to ca 60 mg/L and 500 mg/L in standard rate biological filters. The biological filter was operated at nitrogen loading rates of 72, 145, 290 and 435 g/m2/d, respectively, until stable state conditions were obtained. The biological filter showed effective nitrogen removal between 72 and 434 g/m2/d and the best total nitrogen removal was obtained at 145 g/m2/d, namely 92 %. These results suggest that it should be possible to remove nitrogen effectively using a biological filter beneath a modified ventilated improved pit latrine.  相似文献   

13.
Landfill leachate treatment was investigated using two anaerobic/aerobic sequencing batch reactors inoculated with suspended growth-activated sludge (ASBR) and aerobic granular sludge (GSBR). The total ammonium nitrogen (TAN) concentration in the GSBR influent was as high as 1200 mg/L with an average TAN removal efficiency of 99.7%. However, the ASBR treatment did not show a consistent performance in TAN removal. The TAN removal efficiency decreased with increasing ammonium concentration in the influent. Aerobic granular sludge was found to be more resistant to free ammonia (FA). In the GSBR, nitrification was partially inhibited at FA concentration from 48 to 57 mg/L, which was two times more than the FA concentration that inhibited nitrification in the ASBR. Low chemical oxygen demand removal efficiencies were obtained in both reactors, which was associated with the refractory organic content of the leachate used in this study. This resulted in poor phosphorous removal in both treatments. The results prove that aerobic granular sludge is a robust method as compared to suspended-activated sludge to treat leachate containing high levels of TAN and FA.  相似文献   

14.
In recent years, concerns about the occurrence and fate of active pharmaceutical ingredients, solvents, intermediates and raw materials that could be present in pharmaceutical industry effluents have gained increasing attention. Conventional treatment methods, such as activated sludge, are not sufficient enough to remove active pharmaceutical ingredients completely. As a result, complementary treatment methods like coagulation and flocculation are often used and play a critical role in industrial and municipal wastewater treatment. The primary goal of these methods is to destabilize and remove colloidal particles along with other organic/inorganic contaminants. Recently empirical works have considered ozone as the most promising oxidant for the removal of micro-pollutants. The current study examined the effectiveness of coagulation/flocculation process using ferric chloride, polyaluminum chloride, and aluminum sulfate as a reasonable approach to tackle the issue of treating pharmaceutical wastewater. In addition, the results were compared with the process using only ferric chloride that was the coagulant of an actual treatment plant. Then, improvement of the process performance was investigated using ozone as an oxidant. In conclusion, it was found out that polyaluminum chloride presented better performance among two other coagulants and also adding 200 mg/L of polyaluminum chloride can lead to 97–98 % turbidity removal efficiency. Moreover, polyaluminum chloride was capable of reducing most of the environmental parameters such as chemical oxygen demand and total dissolved solid with the removal efficiency of 70 and 68 %, respectively. Additionally, ozonation improved the coagulation process, especially iron ion removal, and dramatically decreased the concentration from 5.68 to 0.19 mg/L.  相似文献   

15.
This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological–chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification–denitrification process.  相似文献   

16.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

17.
Adsorption kinetic and equilibrium studies of two reactive dyes, namely, Reactive Red 31 and Reactive Red 2 were conducted. The equilibrium studies were conducted for various operational parameters such as initial dye concentration, pH, agitation speed, adsorbent dosage and temperature. The initial dye concentration was varied from 10 - 60 mg/L, pH from 2–11, agitation speed from 100–140 rpm, adsorbent dosage from 0.5 g to 2.5 g and temperature from 30 °C -50 °C respectively. The activated carbon of particle size 600 μm was developed from preliminary tannery sludge. The dye removal capacity of the two reactive red dyes decreased with increasing pH. The zero point charge for the sludge carbon was 9.0 and 7.0 for the two dyes, respectively. Batch kinetic data investigations on the removal of reactive dyes using tannery sludge activated carbon have been well described by the lagergren plots. It was suggested that the Pseudo second order adsorption mechanism was predominant for the sorption of the reactive dyes onto the tannery sludge based carbon. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data fitted well with Langmuir model than the Freundlich model. The maximum adsorption capacity(q0) from Langmuir isotherm were found to have increased in the range of 23.15–39.37 mg/g and 47.62–55.87 mg/g for reactive dyes reactive red 31 and reactive red 2, respectively.  相似文献   

18.
The optimization for poly-β-hydroxyalkanoate production was carried out with nutrient removal efficiency for total organic carbon (TOC), phosphate, and nitrate from palm oil mill effluent waste. The experiment was conducted in a fabricated fed-batch reactor and the data obtained was analyzed using central composite rotatable design and factorial design for response surface methodology as a systematic approach for designing the experiment statistically to obtain valid results with minimum effort, time, and resources. The analysis of numerical optimization with propagation of error showed that 66 % of poly-β-hydroxyalkanoate production can be obtained with nutrient removal of TOC and nitrate by 19 and 3 %, respectively. However, phosphate removal efficiency was not found to be much effective. More over, the chemical oxygen demand: nitrogen phosphate (509 g/g N), chemical oxygen demand: phosphate (200 g/g P), air flow rate (0.59 L/min), substrate feeding rate (20 mL/min), and cycle length (20 h) were the optimized variables for maximum poly-β-hydroxyalkanoate production and nutrient removal.  相似文献   

19.
Two microbial fuel cells with different oxygen supplies in the cathodic chamber were constructed. Electrogenic capabilities of both cells were compared under the same operational conditions. Results showed that binary quadratic equations can express the relationships between chemical oxygen demand degradation rate and chemical oxygen demand loading and between chemical oxygen demand removal rate and chemical oxygen demand loading in both cells. Good linear relationships between power output (voltage or power density) and flow rate and between power output and chemical oxygen demand degradation rate were only found on the cell with mechanical aeration in the cathodic chamber, but not on the cell with algal photosynthesis in the cathodic chamber. The relationships between power output and chemical oxygen demand removal rate and between power output and effluent chemical oxygen demand concentration on both cells can be expressed as binary quadratic equations. The optimum flow rates to obtain higher power density and higher Coulombic efficiency in the cell with mechanical aeration in the cathodic chamber (=0.85?mW/m2 and 0.063%) and in the cell with algal photosynthesis in the cathodic chamber (=0.65?mW/m2 and 0.05%) are about 1000 and 1460???L/min, respectively. The optimum chemical oxygen demand removal rates to obtain higher power density and higher Coulombic efficiency in the cell with mechanical aeration in the cathodic chamber (=1.2?mW/m2 and 0.064%) and in the cell with algal photosynthesis in the cathodic chamber (=0.81?mW/m2 and 0.051%) are about 40.5 and 36.5%, respectively.  相似文献   

20.
In this study, the treatability of marble processing wastewater by electrocoagulation using aluminum and iron electrodes was investigated. The sample used was from the marble-processing plant in Sivas and its turbidity, suspended solids, chemical oxygen demand and total solids concentrations were about 1,914?NTU, 2,904, 150 and 4,750?mg/L, respectively. The effects of various operating parameters such as initial pH, current density and electrolysis time on turbidity, suspended solids, chemical oxygen demand and total solids removal efficiencies were investigated. The settling characteristics of waste sludge produced and energy and electrode consumption were also determined. The optimum values of initial pH, current density and electrolysis time in electrocoagulation studies carried out using aluminum electrode were found to be 7.8, 30?A/m2 and 5?min, respectively. Under these conditions, the removal efficiencies obtained for turbidity, suspended solids, chemical oxygen demand and total solids were 98.5, 99.2, 55.2 and 92.4?%, respectively. Corresponding energy and electrode consumptions were 0.143?kWh/kg SS and 0.010?kg Al/kg SS. For iron electrode, the optimum parameter values were found to be 7.8 pH, 20?A/m2 and 5?min, respectively. Under these conditions, removal efficiencies for turbidity, suspended solids, chemical oxygen demand and total solids were determined as 94.3, 99.1, 54.2, and 96.1?%, respectively. Energy and electrode consumptions were 0.0571?kWh/kg SS and 0.0206?kg Fe/kg SS, respectively. Settling characteristics of sludge produced during experiments carried out using both aluminum and iron electrodes were fairly good. The results showed that electrocoagulation method can be used efficiently for the treatment of marble processing wastewater under proper operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号