首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 24-cm long sediment core from an oxic fjord basin in Ranafjord, Northern Norway, was sliced in 2 cm sections and analysed for As, Co, Cu, Ni, Hg, Pb, Zn, Mn, Fe, ignition loss and Pb-210. Partitioning of metals between silicate, non-silicate and non-detrital phases was assessed by leaching experiments, in an attempt to understand the mechanisms of surface metal enrichment in sediments. Relative to metal concentrations in sediments deposited in the 19th century, metals in near surface sediments were enriched in the following order: Pb > Mn > Hg > Zn > Cu > As > Fe. Cobalt and Ni showed no enrichment. The non-detrital fraction of Cu, Pb, Mn and Zn was significantly higher in the upper 10 cm than at greater depth in the core. This corresponds to sediments deposited since 1900, when mining activities started in the area. The enrichment of Cu, Pb and Zn is assumed to be mainly a result of mining, while Mn is apparently enriched in the surface due to migration of dissolved Mn and precipitation in the oxic surface layer. Elevated concentrations of As and Fe in the upper 4 cm are presumably due to discharges from a coke plant and an iron works respectively. The excess Hg present in the near surface sediments is tightly bound, either in coal particles or ore dust introduced by local industry, or via long distance transport of atmospheric particles. Calculations of metal flux to the sediments indicate an anthropogenic flux of Zn equal to its natural flux, while the flux of Pb shows a threefold increase above natural input.  相似文献   

2.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

3.
Groundwater from 73 municipal and 21 private wells were analyzed for Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sr and Zn over a 3 year monitoring program in the Gaza Strip. The results show that the trace elements of the groundwater of the Gaza Strip do not generally pose any health or environmental hazard. In spite of that, only 10% of the municipal wells meet the WHO standards. Cl-, NO 3 and F- concentrations exceeded 2–9 times the WHO standards in 90% of the wells tested with maximum concentrations of 3,000, 450 and 1.6 mg/l, respectively. Several private wells should not be used for drinking purposes as the average of Zn, Cd, Pb, Fe and As was 58, 30, 270, 468 and 10 μg/l, respectively. A severe water dilemma will appear in the near future from both quality and quantity aspects.  相似文献   

4.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

5.
Smelting slags associated with base-metal vein deposits of the Sierra Almagrera area (SE Spain) show high concentrations of Ag (<5–180 ppm), As (12–750 ppm), Cu (45–183 ppm), Fe (3.2–29.8%), Pb (511–2150 ppm), Sb (22–620 ppm) and Zn (639–8600 ppm). The slags are mainly composed of quartz, fayalite, barite, melilite, celsian, pyrrhotite, magnetite, galena and Zn–Pb–Fe alloys. No glassy phases were detected. The following weathering-related secondary phases were found: jarosite–natrojarosite, cotunnite, cerussite, goethite, ferrihydrite, chalcanthite, copiapite, goslarite, halotrichite and szomolnokite. The weathering of slag dumps near the Mediterranean shoreline has contaminated the soils and groundwater, which has caused concentrations in groundwater to increase to 0.64 mg/L Cu, 40 mg/L Fe, 0.6 mg/L Mn, 7.6 mg/L Zn, 5.1 mg/L Pb and 19 μg/L As. The results of laboratory leach tests showed major solubilization of Al (0.89–12.6 mg/L), Cu (>2.0 mg/L), Fe (0.22–9.8 mg/L), Mn (0.85–40.2 mg/L), Ni (0.092–2.7 mg/L), Pb (>2.0 mg/L) and Zn (>2.5 mg/L), and mobilization of Ag (0.2–31 μg/L), As (5.2–31 μg/L), Cd (1.3–36.8 μg/L) and Hg (0.2–7 μg/L). The leachates were modeled using the numerical code PHREEQC. The results suggested the dissolution of fayalite, ferrihydrite, jarosite, pyrrhotite, goethite, anglesite, goslarite, chalcanthite and cotunnite. The presence of secondary phases in the slag dumps and contaminated soils may indicate the mobilization of metals and metalloids, and help to explain the sources of groundwater contamination.  相似文献   

6.
Sediments of the Lagoa Vermelha (Red Lake), situated in the Ribeira Valley, southeastern Brazil, are made of a homogeneous, organic-rich, black clay with no visible sedimentary structures. The inorganic geochemical record (Al, As, Ba, Br, Co,Cs, Cr, Fe, Mn, Ni, Rb, Sc, Sb, V, Zn, Hg and Pb) of the lake sediments was analyzed in a core spanning 2430 years. The largest temporal changes in trace metal contents occurred approximately within the last 180 years. Recent sediments were found to be enriched in Pb, Zn, Hg, Ni, Mn, Br and Sb (more than 2-fold increase with respect to the “natural background level”). The enhanced accumulation of Br, Sb, and Mn was attributed to biogeochemical processes and diagenesis. On the other hand, the anomalous concentrations of Pb, Zn, Hg and Ni were attributed to pollution. As Lagoa Vermelha is located in a relatively pristine area, far removed from direct contamination sources, the increased metal contents of surface sediments most likely resulted from atmospheric fallout. Stable Pb isotopes provided additional evidence for anthropogenic contamination. The shift of 206Pb/207Pb ratios toward decreasing values in the increasingly younger sediments is consistent with an increasing contribution of airborne anthropogenic lead. In the uppermost sediments (0-10 cm), the lowest values of the 206Pb/207Pb ratios may reflect the influence of the less radiogenic Pb from the Ribeira Valley District ores (206Pb/207Pb between 1.04 and 1.10), emitted during the last 50 years.  相似文献   

7.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

8.
Arsenic species including arsenite, arsenate, and organic arsenic were measured in the porewaters collected from Poyang Lake, the largest freshwater lake of China. The vertical distributions of dissolved arsenic species and some diagenetic constituents [Fe(II), Mn(II), S(−II)] were also obtained in the same porewater samples in summer and winter. In sediments the concentration profiles of total As and As species bound to Fe–Mn oxyhydroxides and to organic matter were also determined along with the concentrations of Fe, Mn and S in different extractable fractions. Results indicate that, in the summer season, the concentrations of total dissolved As varying from 3.9 to 55.8 μg/L in sediments were higher than those (5.3–15.7 μg/L) measured in the winter season, while the concentrations of total As species in the solid phase varied between 10.97 and 25.32 mg/kg and between 7.84 and 30.52 mg/kg on a dry weight basis in summer and winter, respectively. Seasonal profiles of dissolved As suggest downward and upward diffusion, and the flux of dissolved As across the sediment–water interface (SWI) in summer and winter were estimated at 3.88 mg/m2 a and 0.79 mg/m2 a, respectively. Based on porewater profiles and sediment phase data, the main geochemical behavior of As was controlled by adsorption/desorption, precipitation and molecular diffusion. The solubility and migration of inorganic As are controlled by Fe–Mn oxyhydroxides in summer whereas they appear to be more likely controlled by both amorphous Fe–Mn oxyhydroxides and sulfides in winter. A better knowledge of the cycle of As in Poyang Lake is essential to a better management of its hydrology and for the environmental protection of biota in the lake.  相似文献   

9.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

10.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

11.
Passive treatment systems are widely used for remediation of acid mine drainage (AMD), but existing designs are prone to clogging or loss of reactivity due to Al- and Fe-precipitates when treating water with high Al and heavy metal concentrations. Dispersed alkaline substrate (DAS) mixed from a fine-grained alkaline reagent (e.g. calcite sand) and a coarse inert matrix (e.g. wood chips) had shown high reactivity and good hydraulic properties in previous laboratory column tests. In the present study, DAS was tested at pilot field scale in the Iberian Pyrite Belt (SW Spain) on metal mine drainage with pH near 3.3, net acidity 1400–1650 mg/L as CaCO3, and mean concentrations of 317 mg/L Fe (95% Fe(II)), 311 mg/L Zn, 74 mg/L Al, 20 mg/L Mn, and 1.5–0.1 mg/L Cu, Co, Ni, Cd, As and Pb. The DAS-tank removed an average of 870 mg/L net acidity as CaCO3 (56% of inflow), 25% Fe, 93% Al, 5% Zn, 95% Cu, 99% As, 98% Pb, and 14% Cd, but no Mn, Ni or Co. Average gross drain pipe alkalinity was 181 mg/L as CaCO3, which increased total Fe removal to 153 mg/L (48%) in subsequent sedimentation ponds. Unfortunately, the tank suffered clogging problems due to the formation of a hardpan of Al-rich precipitates. DAS lifetime could probably be increased by lowering Al-loads.  相似文献   

12.
This study investigates the values of pH, total dissolved solids (TDS), elevation, oxidative reduction potential (ORP), temperature, and depth, while the concentrations of Br, and potentially harmful metals (PHMs) such as Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe in the groundwater samples. Moreover, geographic information system (GIS), XLSTAT, and IBM SPSS Statistics 20 software were used for spatial distribution modeling, principal component analysis (PCA), cluster analysis (CA), and Quantile-Quantile (Q-Q) plotting to determine groundwater pollution sources, similarity index, and normal distribution reference line for the selected parameters. The mean values of pH, TDS, elevation, ORP, temperature, depth, and Br were 7.2, 322 mg/L, 364 m, 188 mV, 29.6 °C, 70 m, 0.20 mg/L, and PHMs like Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe were 0.38, 0.26, 0.08, 0.27, 0.36, 0.22, 0.04, 0.43 and 0.86 mg/L, respectively. PHMs including Cr (89%), Cd (43%), Mn (23%), Pb (79%), Co (20%), and Fe (91%) exceeded the guideline values set by the world health organization (WHO). The significant R2 values of PCA for selected parameters were also determined (0.62, 0.67, 0.78, 0.73, 0.60, 0.87, ?0.50, 0.69, 0.70, 0.74, ?0.50, 0.70, 0.67, 0.79, 0.59, and ?0.55, respectively). PCA revealed three geochemical processes such as geogenic, anthropogenic, and reducing conditions. The mineral phases of Cd(OH)2, Fe(OH)3, FeOOH, Mn3O4, Fe2O3, MnOOH, Pb(OH)2, Mn(OH)2, MnO2, and Zn(OH)2 (?3.7, 3.75, 9.7, ?5.8, 8.9, ?3.6, 2.2, ?4.6, ?7.7, ?0.9, and 0.003, respectively) showed super-saturation and under-saturation conditions. Health risk assessment (HRA) values for PHMs were also calculated and the values of hazard quotient (HQ), and hazard indices (HI) for the entire study area were increased in the following order: Cd>Ni>Cu>Pb>Mn>Zn>Cr. Relatively higher HQ and HI values of Ni, Cd, Pb, and Cu were greater than one showing unsuitability of groundwater for domestic, agriculture, and drinking purposes. The long-term ingestion of groundwater could also cause severe health concerns such as kidney, brain dysfunction, liver, stomach problems, and even cancer.  相似文献   

13.
Passive treatment systems have become one of the most sustainable and feasible ways of remediating acid mine drainage (AMD). However, conventional treatments show early clogging of the porosity or/and coating of the reactive grains when high acidity and metal concentrations are treated. The performance of fine-grained reagents dispersed in a high porosity matrix of wood shavings was tested as an alternative to overcome these durability problems. The system consisted of two tanks of 3 m3 filled with limestone sand and wood shavings, and one tank of 1 m3 with caustic magnesia powder and wood shavings, separated by several oxidation cascades and decantation ponds. The system treated about 1.5 m3/day of AMD containing an average of 360 mg/L Fe, 120 mg/L Al, 390 mg/L Zn, 10 mg/L Cu, 300 μg/L As and 140 μg/L Pb, a mean pH of 3.08 and a net acidity of 2500 mg/L as CaCO3 equivalent. The water reached pH 5 and 6 in the first and second limestone tanks, respectively (suitable to remove trivalent metals); and pH 8–9 in the MgO tank (suitable to remove divalent metals). After 9 months of operation, the system achieved an average removal of 100% Al, Cu, As, Pb, more than 70% Fe, about 25% Zn and 80% acidity. Goethite, schwertmannite, hydrobasaluminite, amorphous Al(OH)3 and gypsum were the main precipitates in the two limestone tanks. Precipitation of divalent metals (Fe (II), Zn, and traces of Cd, Ni and Co) were complete inside the third tank of MgO, but preferential flow along the walls was responsible for its low treatment performance. Goethite, gypsum, Zn-schulenbergite and sauconite are the crystalline solid phases identified in the MgO tank.  相似文献   

14.
The lower Jia Bharali catchment and adjoining areas in central part of North Brahmaputra Plain (NBP) is characterized by more than 800m thick Older and Younger Alluvium deposited by the west flowing Brahmaputra river and the south flowing trans Himalayan rivers. Unconfined, shallow alluvial aquifers of the area with a general southward flow are largely tapped for domestic use through numerous dug well attached with almost every household. Monitoring of 180 dug wells for two hydrological years show strong seasonal fluctuation of the groundwater table linked to the summer monsoon that brings more than 1500mm precipitation in the area between June-September. This study has presents the first ever systematic database on toxic trace elements viz., As, Cr, Fe, Mn, Ni, Pb and Zn from the shallow aquifers in north Brahmaputra plain based on water samples from 50 monitoring wells collected in both dry and wet seasons. The data was analysed with respect to WHO standards for drinking water and significantly, 2 % of the measurements show As in excess of the WHO limit while 60% of the samples in the wet season and as much as 90 % of the same in dry season have Cr content more than the WHO permissible limit. Pb concentration is above permissible limit of 0.05 mg/L in most of the dry season samples although 88 % of the rainy season samples show Pb concentration exceeding this limit. 34 % of the samples in the wet seasons and 86 % of the samples in the dry seasons have Mn above the permissible limit of 0.1 mg/L while in case of Ni, 56 % of the aquifers in the wet season and 72 % of the aquifers in the dry season show Ni content above the permissible limit of 0.02 mg/L. Zn contents of the aquifers are however very low throughout the year.  相似文献   

15.
A study of the San Pedro River (SPR), which is located in a semi-arid region in Sonora, Mexico, was conducted to evaluate the chemical, spatial and temporal (mobilization) trends of potentially harmful metals in its sediment in the rainy and dry seasons. High total concentrations of metals were detected in the following order: Fe > Cu > Mn > Zn > Pb > Cd. All studied metals except for Pb were increased during the dry season showing the effect of climate on the metal distribution in sediments. The results of sequential extraction indicated that the residual and Fe/Mn oxide fractions were the most important with regard to retaining potentially harmful metals in the sediments. In the exchangeable carbonate and Fe oxide fractions, high concentrations of metals were detected, representing high environmental risk. The geoaccumulation index shows slight to moderate contamination in most samples, and sampling point E4 (related to cattle activity) shows strong contamination for Cd, Cu, Pb and Zn. Enrichment factors (EFs) demonstrate anthropogenic origins for Pb (EF: 3–57), Cd (EF: 6–73) and Cu (EF: 1.5–224). This study shows that sediments are impacted by anthropogenic activities related to the mining industry, untreated wastewater discharges from the city of Cananea and cattle activities. Metal mobility in the SPR can disrupt the development of aquatic species in the river.  相似文献   

16.
《Applied Geochemistry》1997,12(4):447-464
The controls on metal concentrations in a plume of acidic (pH 3.29–5.55) groundwater in the Moon Creek watershed in Idaho, U.S.A., were investigated with the use of property-property plots. A plot of Ca vs S demonstrated that a plume of contaminated groundwater was being diluted by infiltration of rain and creek water at shallow depths and by ambient groundwater near bedrock. The small amount of dissolved Fe (2.1 mg/l) was removed while dissolved Pb was added, reaching a maximum concentration of 0.37 mg/l. The other metals (Zn ≤ 16, Al ≤ 6.2, Cu ≤ 2.1 and Cd ≤ 0.077 mg/l) in the shallow groundwater were essentially conserved until they emerged as a seep along the creek bank. Upon mixing with the creek water, groundwater was diluted by factors between 11 and 50, and the pH of the mixture became neutral. Metals originating from the contaminated groundwater were removed in the creek in the following order: Fe > Al > Pb ≫ Cu > Mn > Zn = Cd.Pb and Cu continued to be removed from solution even as the creek passed adjacent to a tailings pile. In contrast, Zn concentrations in the creek increased adjacent to the tailings area, presumably as a result of the reemergence of the upgradient plume as the creek lost elevation.Below the tailings dam, contaminated creek water (400–800 μg Zn/l) was diluted by both smaller side streams and a creek of equal flow. The presence of 3 distinctive water masses required the use of two tracers (dissolved Si and S) to distinguish between mixing and geochemical reactions. The removal of metals was greater during low flow conditions. Pb was removed to the greatest extent, falling below detection limits (0.5 μ/l) at the first sampling location. Copper and Mn were removed to a lesser extent during low flow conditions and approached conservative behavior during high flow conditions. During a 5-km journey through two hydrological regimes, less than 10% of the dissolved Zn and Cd was lost.  相似文献   

17.
Lerma River is one of the largest rivers in Mexico. Over the past 20 years, unplanned population growth occurred along its course and the river has been used as the only outlet for industrial and domestic wastewater disposal. The aim of the present study was to determine trace metals such as Cr, Ni, Cu, Zn, Fe, Pb, and arsenic concentrations at the upper layer of sediments of the Lerma River meander in La Piedad, Michoacan, Mexico. Sediment samples were collected from eight different sites during the rainy and dry seasons. All samples were physically characterized, and concentration values of trace metals and As were determined. On the basis of protection criteria for freshwater sediments, concentrations of Fe, Zn, Cu, Ni, and Pb were found to exceed the lowest effect level; moreover, the concentrations were found to exceed the severe effect level at some sites, particularly for Cu. Statistical analyses showed significant differences between sampling seasons for Fe and As, and among sites for Ni, Cu, Zn, and Pb. In addition, the enrichment factor indicates the following order Zn > Cr > Cu > Ni > Pb > As, and the geoaccumulation index (I geo) indicates contamination in the following order Zn > Cr > Cu > Ni > As > Pb. The Lerma River meander in La Piedad shows a reduction in pollution by trace metals and arsenic near the drain area and downstream of the meander. However, there are significantly higher concentrations of these elements in sediments of sites located in the middle part of the city.  相似文献   

18.
The distribution and partitioning of trace metals (Co, Cu, Fe, Mn, Ni, and Zn) between dissolved and particulate phases were studied in the Tanshui Estuary. The upper reach of the estuary is hypoxic and heavily polluted due to domestic and industrial discharges. The concentration ranges of dissolved and leachable particulate trace metals in the Tanshui Estuary were: Co: 0.3–6.1 nM, 1.8–18.6 mg kg−1; Cu: 5–53 nM, 22–500 mg kg−1; Fe: 388–3,364 nM, 1.08–6.67%; Mn: 57–2,914 nM, 209–1,169 mg kg−1; Ni: 7–310 nM, 6–108 mg kg−1; and Zn: 12–176 nM, 62–1,316 mg kg−1; respectively. The dissolved concentrations of the metals were 2–35 times higher than the average values of the world river water. The distributions of dissolved and particulate studied metals, except Mn, in the estuary showed scattering, which could be attributed to the discharges from many industrial wastewater disposal works located in the upper tributaries. The daily input of dissolved metals from the disposal works to the Tanshui Estuary ranged from 0.1–0.4 tons. Dissolved Mn was nearly conservative in the region with salinity higher than 10 psu, while particulate Mn decreased in the region with salinity of 10–15 psu. The concentration increased significantly seawards, corresponding with the distribution of dissolved oxygen. The distribution coefficient (KD) for Mn in the lower estuary was nearly three orders of magnitude higher than in the upper estuary. This phenomenon may be attributed to the diffusion of Mn from the anoxic sediment in the upper estuary and gradual oxidation into particulate Mn in the middle and lower estuary as the estuarine water became more oxygenated. The distribution coefficient for Cu decreased with increasing salinity. The percentages of trace metals bound by suspended particulate matter decreased in the following order: Fe>Zn, Cu>Co>Mn>Ni.  相似文献   

19.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

20.
运用ICP-MS和ICP-OES分析了攀枝花市不同时段不同地点大气降尘中重金属元素含量,并对大气降尘中重金属的地球化学特征进行了分析,得出以下结论:①攀枝花市大气尘中As、Co、Mn、Pb、Ti、V的含量,与四川省其他城市相比均偏高,Zn的含量相对较低;②Cd、Mn、Pb主要分布在冶炼区和石灰石矿区,Co、Cu、Ti主要分布在石灰石矿区,Cr和V主要分布在冶炼区,As在仁和河富集较为富集,Zn集中在排土场附近,Fe集中在冶炼区和煤矿区;③除Pb外,其余十种元素旱季含量基本都高于雨季,而雨季Pb的含量却明显高于旱季。通过主成份分析,得出了在攀枝花市大气降尘中,重金属元素的来源主要为矿山污染和开采过程中产生的废水、废气。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号