首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Coal is the most abundant fossil fuel in the world. Because of the growth of coal mining, coal-fired power plants and coal-burning industries, the increase of the emission of particulates(coarse, fine or ultrafine)is of great concern. There is a relationship between increasing human morbidity and mortality and progressive environmental air pollution caused by these types of particles. Thus, the knowledge of the physico-chemical composition and ambient concentrations of coal-derived nanoparticles will improve pollution control strategy. Given the current importance of this area of research, the advanced characterization of this coal combustion-derived nanoparticles/nanominerals as well as hazardous elements is likely to be one of the hottest research fields in coming days. In this review, we try to compile the existing knowledge on coal-derived nanoparticles/nanominerals and discuss the advanced level of characterization techniques for future research. This review also provides some of aspects of health risks associated with exposure to ambient nanoparticles. In addition, the presence of some of the hazardous elements in coal and coal combustion activities is also reviewed.  相似文献   

2.
Industrial development has lead to higher energy consumption, emission of greenhouse gases, as well as air pollutants. Cement factories play an important role in over all greenhouse emissions. This study aims to investigate the role of Iranian cement industries and their contribution of greenhouse gases contribution. The measured emission factors for oil and fuel gas shows that carbon dioxide contribution from fuel oil based cement industries is almost 2.7 times higher than gas based cement factories. The strength, weakness, opportunity and threat technique analysis showed that the best strategy to combat greenhouse gases from Iranian cement factory is to implement energy efficiency measures. Further, strategic position and action evaluation matrix analysis indicates that Iranian cement industries fall within invasive category. Therefore, exploitation of opportunities must carefully be used. One of these opportunities is the utilization of financial assistance provided by clean development mechanism. The results show that replacement of ball mills with vertical roller mill can reduce the electricity consumption from 44.6 to 28 kWh/ton. As a result of such substitution about 720 million kWh/y of electricity would be saved (almost a power plant of 125 MW capacities). Though implementation of new mills may not be economic for the cement industries’ owner, but the overall gain for the government of Iran will be about US$ 304 million. If the duration of such efficiency measure is considered as about 12 y, then the overall CO2 reduction/phase-out would be around 4.3 million tons.  相似文献   

3.
Keith Chapman 《Geoforum》1983,14(1):37-44
Most analyses of agglomeration in manufacturing evaluate the merits of clustered and dispersed spatial arrangements of plants in terms of their effects upon the profitability of individual enterprises. However, the problem of defining optimal levels of agglomeration becomes very much more acute if the costs and benefits are considered with reference to society as a whole. Examples of air and water pollution from petrochemical plants in Texas and Louisiana are used to illustrate these difficulties. It is argued that the technology and economics of pollution control have tended to reinforce the cost advantages to industry of agglomeration in large complexes despite the fact that major concentrations of polluting industries may be regarded, from a broader environmental perspective, as intrinsically undesirable.  相似文献   

4.
The United States is one of the world's leaders in electricity production, generating about 4116 billion kWh in 2021, of which coal accounted for 21.8% of the total. This study applies an integrated approach using both terrestrial and satellite data to specifically examine emissions from coal-fired power plants and its spatial extent. The study also highlights the effectiveness of government policies to reduce emissions. It was found that emission of pollutants from the country's energy sector has been steadily declining, with annual emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) decreasing from the US electric power sector between 1990 and 2020 by 93.4% and 84.8%, respectively, and carbon dioxide (CO2) by 37% between 2007 and 2020. Although overall emissions from coal-fired power plants are declining, some individual plants have yet to install environmental equipment to control emissions. According to US government data, major emitters of SO2, NOx, and CO2 in the US are the Martin Lake power plant in East Texas, the Labadie power plant near St. Louis, Missouri, and the James H Miller Jr plant near Birmingham, Alabama. This study also integrates TROPOMI satellite data to detect point emissions from individual power plants. While the highest levels of measured pollutants were over the country's major cities and areas of fossil fuel extraction, TROPOMI could clearly distinguish the pollution caused by power plants in more rural areas. Although the US has made great strides in reducing emissions from coal-fired power plants, these plants still represent a major source of pollution and remain a major concern. Totally eliminating coal as a power source will be difficult with the higher power demands resulting from the transition to electric automobiles.  相似文献   

5.
超低排放燃煤电厂一次颗粒物和黑碳实时排放特征   总被引:2,自引:0,他引:2  
燃煤电厂是大气一次污染物的重要排放源,其超低排放改造改变了大气颗粒物排放特征。为满足当前高时间分辨率排放清单构建的需要,燃煤电厂颗粒物实时排放质量浓度及关键组分比值亟需更新。本研究基于稀释通道采样系统,对某超低排放改造后的燃煤电厂开展实测,获得该燃煤电厂可吸入颗粒物(PM10)、细颗粒物(PM2.5)、超细颗粒物(PM1.0)和黑碳(BC)的实时排放质量浓度,更新各污染物排放因子,分析PM1.0/PM2.5、PM2.5/PM10和BC/PM2.5质量浓度比值(文中以上比值均为质量浓度比值)日变化。结果表明,上述污染物排放平均质量浓度分别为(5.0±6.0)mg/m^3、(5.0±5.9)mg/m^3、(4.9±5.9)mg/m^3和(36.6±28.3)μg/m^3;对应的排放因子分别为0.03 kg/t、0.03 kg/t、0.03 kg/t和0.2 mg/kg。该燃煤电厂颗粒物排放质量浓度表现出明显的日间变化,高值时段(20:30至次日10:30)PM2.5平均质量浓度是低值时段(10:30~20:30)的12.2倍,推测可能与不同时段的污染控制措施效率变动有关。作为不完全燃烧的产物,黑碳排放高值时段(06:00~12:00和14:30~19:00)的质量浓度是低值时段(00:00~05:00)相应值的1.5~2.4倍,推测与煤的添加和锅炉燃烧效率有关。颗粒物及组分质量浓度的日变化在构建高时间分辨率排放清单时需予以考虑。本研究实测所得PM2.5/PM10和BC/PM2.5比值分别为1.00±0.01和0.03±0.04,均远高于清单编制技术手册中推荐的燃煤电厂相应比值0.3和0.002,采用现有清单编制技术手册的相应比值可能低估了燃煤电厂细颗粒物和黑碳排放,需引起重视。  相似文献   

6.
We discuss an adaptive resolution system for modeling regional air pollution based on the chemical transport model STEM. The grid adaptivity is implemented using the generic adaptive mesh refinement tool Paramesh, which enables the grid management operations while harnessing the power of parallel computers. The computational algorithm is based on a decomposition of the domain, with the solution in different subdomains being computed with different spatial resolutions. Various refinement criteria that adaptively control the fine grid placement are analyzed to maximize the solution accuracy while maintaining an acceptable computational cost. Numerical experiments in a large-scale parallel setting (~0.5 billion variables) confirm that adaptive resolution, based on a well-chosen refinement criterion, leads to the decrease in spatial error with an acceptable increase in computational time. Fully dynamic grid adaptivity for air quality models is relatively new. We extend previous work on chemical and transport modeling by using dynamically adaptive grid resolution. Advantages and shortcomings of the present approach are also discussed.  相似文献   

7.
CHARACTERISTICS OF MINERAL RESOURCES DISTRI-BUTIONIn the mid-south Shandong Province,the distribution ofmineral resources has zonality:(1 ) In the west-south part ofthe district(including Jining,Zaozhuang) ,are mainly en-riched energy mineral resources such as coal,gas and oil. (2 )The west-north part (including Zibo,Jinan,Taian and L ai-wu) is abundant in iron,coal,auxiliary materials. (3 ) Theeast-south part(including Weifang and L inyi) is rich in goldand nonmetallic m…  相似文献   

8.
Estimation of coal power plant emissions is a vital step to visualise emission trends with respect to specific policy implementations and technological interventions so that their effectiveness in terms of emission reductions and ambient air quality improvement can be quantitatively assessed. However, research work concerning stack emission estimations specifically for coal power plants in India is limited. To bridge the present gap, we present a plant-specific multi-year and multi-parameter Coal Power Stack Emission Model. This model has been developed to explore current and historical annual stack emissions from a coal-based thermal power plant taking into account essential variables such as coal characteristics, process attributes and control equipment aspects, which can significantly influence the stack emissions. This study concentrates on development of Coal Power Stack Emission model and its application for the estimation of plant and year-specific emission factors and stack emissions for a coal-based power plant at Badarpur, New Delhi, for the period of 2000–2008. The validation of Coal Power Stack Emission model has also been successfully carried out by comparing the trends of percentage change in annual emission estimates and observed ambient air concentrations of total suspended particles, PM10 and sulphur dioxide at two nearby air quality monitoring stations, namely Siri Fort and Nizamuddin.  相似文献   

9.
Logistics in China has grown rapidly; in 2015, the freight volume has reached 41 billion ton, increasing by 4.4% year-on-year. At the same time, the pollutant emissions from freight cars account for 70% of total emissions of motor vehicles, which severely affected the air quality. The purpose of this paper is to investigate the effect of logistics on air pollution; we used a new methodology based on vector autoregression of freight turnover, gross domestic product, and urban population. We selected Beijing as our test and created a model using time series data for the period 2000–2014. In this model, permanent residents, freight turnover, and SO2 emission were used as proxies for population size, logistic services, and degree of air pollution. Our analyses showed that the expansion of logistic services had the biggest effect on air pollution. Moreover, impulse response analysis revealed that logistic growth caused more serious air pollution over a short time, with an ongoing negative effect. GDP growth was only weakly correlated with air pollution, while urban population growth appeared to have little effect.  相似文献   

10.
Wang  Mingquan  Zhang  Lingyun  Su  Xin  Lei  Yang  Shen  Qun  Wei  Wei  Wang  Maohua 《Natural Hazards》2019,99(3):1455-1468

Thermal power, steel, cement, and coal chemical industries account 62.6% energy consumption and 84.6% carbon emissions of China simultaneously in 2015. This research use C3IAM-Tice model to analyze the impact of advanced technologies ratio increasing quantitatively. The model can explore the balance of emission reduction and economy efficiency of energy use, finally got the technology structure optimization for these four industries. The paper uses the historical energy consumption and CO2 emission, combing with the low-carbon developing goal objection, to create the database for these four energy- and carbon-intensive industries. As the result, the scenario-4, which is the most advanced technology-oriented strategy, shows 282 Mt CO2 emission reductions for the 2020 Goal. In this scenario, 26.19%, 47.43%, 65.39%, and 28.98% of the CO2 emissions per unit of added value in thermal power industry, steel industry, cement industry, and coal chemical industry could be reduced comparing with data in 2005. Although the advanced technology-oriented strategy shows the positive impact, we need to consider the cost of elimination of existed technology. On the other hand, the paper notices the future technology, with new energy alternative, low-carbon economy development, and industry restructure together, which are important factors for the low-carbon development of China.

  相似文献   

11.
The incidence of power station emissions in the composition of the atmospheric aerosols in an urban-industrial area is presented in this study. The Iberdrola (Spanish electrical company) thermoelectric power station is located at Castellon's industrial estate along the Spanish Mediterranean coast. Due to the fact that there are other polluting industries in this region, the present study is also helpful to investigate potential tracers to discriminate the origin and source of particular pollution events. The analysis of air particulate samples, collected on cellulose membrane filters, was carried out by means of the following instrumentation: (1) mineralogical analysis by X-ray diffraction (XRD), (2) morphological study by scanning electron microscopy (SEM/EDX), and (3) chemical analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS), to carry out quantitative chemical analyses of both major and trace elements. This analysis has allowed the authors to find marker elements, V and Zn, for the power station emissions.  相似文献   

12.
Pakistan is a developing country existing geographically at a pivoted location between two of the world’s largest pollution emitting countries (China and India) which adds to the severity of environmental issues faced by the country. These concerns include air pollution, climate change, and extreme weather situations prevailing in Pakistan. This increasing air pollution is deteriorating the health, threatening the food security and adding up its share to the already existing global warming. The initial step in devising a wide ranging, multifaceted, economically feasible, and sustainable solution to deal with the severity of this issue is the quantification of the air pollution and greenhouse gas emission in Pakistan. The GAINS model is one of the most comprehensive tools, dealing with the air pollutants and greenhouse gases covered by the Kyoto Protocol. This study has utilized this model to analyze the source-based anthropogenic emissions of air pollutants (NH3 and SO2), volatile organic compounds (VOCs), and greenhouse gases (CH4 and CO2), their impacts and abatement cost, for the duration of 1990–2030, in the Khyber Pakhtunkhwa and Balochistan regions of Pakistan. An overall increasing trend was observed during 1990–2030 for (a) air pollutants: NH3 (223.52–568.87kT/Y); SO2 (50.52–332.95kT/Y), (b) VOCs (121.76–246.81kT/Y), and (c) greenhouse gases: CO2 (7.83–62.45MT/Y) and CH4 (1120-2314kT/Y). The emission inventories created for all greenhouse gases together estimated the increase of 42.37 to 138.57 MTCO2eq. for greenhouse gases over the time duration of 1990–2030.  相似文献   

13.
地下水资源在世界各国水资源中占有举足轻重的地位,对人类生存发展、维系生态系统健康发挥着重要作用。现阶段地下水污染日益严重,地下水环境背景值研究和污染风险评价对地下水污染防治工作具有重要意义。由于地下水污染影响因素复杂,地下水化学组分空间分布的非均质性、地下水样品采集的小样本问题与大尺度区域的高计算代价,都对传统的污染风险评价方法构成了极大挑战。机器学习作为人工智能的核心,已成为水文地质领域研究的前沿热点,通过智能高效的数据处理和挖掘,在地下水化学组分的分布、变化以及赋存机制等方向已得到探索和尝试。本文全面介绍了近年来在地下水污染研究方面应用的机器学习方法,涵盖了以聚类为主的非监督学习算法,以回归为主的监督学习算法,以提升算法效率为目标的混合算法,以及以神经网络为核心的深度结构算法,展示了不同类型算法在地下水污染研究方面的成果,详细归纳了各种算法的机理,对算法的技术优劣及适用方向进行了探讨;最后对机器学习在地下水污染方面的应用发展趋势进行了展望,建议探索高效集成学习模型,以弥补单一算法的不足,同时发展面向小样本的深度学习建模技术,提高地下水污染评价精度,拓展和丰富新方法新技术在地下水污染研究方面的应用。  相似文献   

14.
The aim of the study is to analyze three different waste treatment technologies by life cycle assessment tool. Sanitary Landfill, Incineration and gasification-pyrolysis of the waste treatment technologies are studied in SimaPro software based on input-output materials flow. SimaPro software has been applied for analyzing environmental burden by different impact categories. All technologies are favorable to abiotic and ozone layer depletion due to energy recovery from the waste treatment facilities. Sanitary landfill has the significantly lower environmental impact among other thermal treatment while gases are used for fuel with control emission environment. However, sanitary landfill has significant impact on photochemical oxidation, global warming and acidification. Among thermal technology, pyrolysis-gasification is comparatively more favorable to environment than incineration in global warming, acidification, eutrophication and eco-toxicity categories. Landfill with energy recovery facilities is environmentally favorable. However, due to large land requirement, difficult emission control system and long time span, restriction on land filling is applying more in the developed countries. Pyrolysis-gasification is more environmental friendly technology than incineration due to higher energy recovery efficiency. Life cycle assessment is an effective tool to analyze waste treatment technology based on environmental performances.  相似文献   

15.
防洪效益评估对防洪工程投资决策与减灾对策制定具有重要意义。建立集成了与太湖流域防洪效益评估相关的系列模型和方法,包括含降雨产流与平原净雨计算的水文分析方法、由河网水动力学模型和平原区域洪水分析模型组成的大尺度水力学模型、综合流域社会经济和淹没因素的洪灾损失评估模型。模拟了太湖流域遇特大洪水的灾害损失,开展了不同防洪工程应对流域性特大洪水减灾效益的预测分析。结果表明:1999年型200年一遇降雨将会给太湖流域造成高达568.29亿元的直接经济损失,外排动力增强30%至100%的防洪效益介于26.69亿元到45.70亿元之间,新建圩区、太浦河拓宽的防洪效益依次减小,而圩区泵排能力增加30%的防洪效益仅为0.65亿元。基于研究成果提出了增设外排泵站、加强圩区科学调度、通过保险分担风险等应对特大洪水的对策措施建议,为太湖流域特大洪水的防治提供支撑和参考。  相似文献   

16.
防洪效益评估对防洪工程投资决策与减灾对策制定具有重要意义。建立集成了与太湖流域防洪效益评估相关的系列模型和方法,包括含降雨产流与平原净雨计算的水文分析方法、由河网水动力学模型和平原区域洪水分析模型组成的大尺度水力学模型、综合流域社会经济和淹没因素的洪灾损失评估模型。模拟了太湖流域遇特大洪水的灾害损失,开展了不同防洪工程应对流域性特大洪水减灾效益的预测分析。结果表明:1999年型200年一遇降雨将会给太湖流域造成高达568.29亿元的直接经济损失,外排动力增强30%至100%的防洪效益介于26.69亿元到45.70亿元之间,新建圩区、太浦河拓宽的防洪效益依次减小,而圩区泵排能力增加30%的防洪效益仅为0.65亿元。基于研究成果提出了增设外排泵站、加强圩区科学调度、通过保险分担风险等应对特大洪水的对策措施建议,为太湖流域特大洪水的防治提供支撑和参考。  相似文献   

17.
Resource scheduling for both cost and pollution minimization in the power system is so crucial. To reduce the greenhouse gas emission, employing renewable energy resources, especially solar and wind energy, and beside them plug-in hybrid electric vehicles are effective solutions. In industrial factories, using biomass resources for power generation is both economic and environmental approach. In sugarcane company, bagasse is plant fiber residue which is used as fuel. Electric lift trucks, capable of being connected to power grid, could decrease the pollution in industrial transportations. In this paper, scheduling problem for a large-scale sugarcane factory including solar resources, a thermal unit, and electric lift trucks is presented and solved by CPLEX solver in GAMS software. In order to consider uncertainties, different scenarios are noticed. To contribute better understanding of optimization problem, cost, pollution, and charging regime of electric lift trucks are carefully analyzed. The results show that implementation of the biomass electric power generation is effective for reducing cost and amount of emission.  相似文献   

18.
This paper presents an integrated effort of a long-term risk analysis for the emergency response of nuclear power plants in complex terrains. Use of coupled source term, fate and transport, and exposure assessment models associated with eight synoptic weather patterns successfully provides timely and reasonably accurate long-range prognostic wind fields to simulate the possible exposure episodes and risk potential. The seamless integration of multi-scale simulation models in accordance with different release scenarios of process source term in the nuclear power plants permits the simulation of pollutant fate, transport, and deposition processes in multiple dimensions of atmospheric environment. With the aid of spatial analysis, the assessment of potential detrimental impacts for the accidental release of various nuclides from nuclear power plants becomes achievable. The practical implementation of this integrated modeling system was assessed by case studies at one existing nuclear power plant in southern Taiwan, China. Two- and three-dimensional fly-through visualization technologies make risk assessment practical and credible based on the differing weather patterns identified at the continental scale in advance.  相似文献   

19.
马荣  石建省 《地球学报》2011,32(5):611-622
传统的多元统计法难以定量化表征不同污染源对单个样本点的影响,本文引入了一种新的方法——模糊因子分析法.将该方法应用于洛阳市地下水污染来源解析研究,通过模糊聚类和因子分析对研究区样品进行分类,探明主要的污染源类型及其对整个研究区和单个样品点的污染贡献率.计算结果表明:洛阳市浅层地下水主要有以下四个污染源:基岩风化、加工制...  相似文献   

20.
Multidimensional assessment of air pollution was carried out on trace metals in particulates, desert plant parts and soil collected from the six sites to validate air pollution tolerance index, translocation and bioaccumulation factors. A map indicating the sampled sites was superimposed on the Disper 5.2 software graphical interface to track the particulate dispersion route during the summer and winter seasons. This study showed site-wise orientation of particulates dispersed in the ambient air. Observations indicated the high concentrations of dispersed coarse > fine > ultra-fine particulates in trace metals analyzed from selected desert plants and in the soil especially during winter than in the summer seasons. High air pollution tolerance index was observed in the sequence of Calatropis gigantean > Portulaca oleracea > Citrullus collocynthis > Rumex vesicarius > Bienertia sinuspersici > Tribulus terrestris. Assessment of translocation and bioaccumulation factors labeled these desert plants as hyper-accumulators. The synergistic effect of the translocation and bioaccumulation factor in the various plants and the pollution levels for a given geographical location provides insight management to mitigate air pollution and landscape designers to grow tolerant species and protect sensitive plants from air pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号