首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Adsorption and desorption of uranium(VI) from dilute aqueous solutions by Eucalyptus citriodora distillation sludge was studied in a batch mode. The potential of Eucalyptus citriodora distillation sludge to remove uranium(VI) from aqueous solutions has been investigated at different conditions of solution pH, metal ion concentrations, biosorbent dosage, biosorbent particle size, contact time and temperature. The results indicated that biosorption capacity of Eucalyptus citriodora distillation sludge was strongly affected by the medium pH, the biosorbent dose, metal ion concentrations and medium temperature. Reduction in particle size increased the biosorption capacity. Langmuir and Freundlich isotherm models were applied to biosorption data to determine the biosorption characteristics. An optimum biosorption capacity (57.75 mg/g) was achieved with pH 4.0, particle size 0.255 mm, biosorbent dose 0.5 g/100 mL and initial uranium(VI) concentration of 100 mg/L. Uranium(VI) removal by Eucalyptus citriodora distillation sludge was rapid, the equilibrium was established within 60 min and pseudo-second-order model was found to fit with the experimental data. The biosorption process decreased with an increase in the temperature indicating its exothermic nature. Pretreatments of biomass with different reagents affected its biosorption capacity. A significant increase (34 %) in biosorption capacity (83.25 mg/g) was observed with benzene treatment. Fourier-transform infra-red studies showed the involvement of carbonyl, carboxyl and amide groups in the biosorption process. The results indicated that sulfuric acid had the best effects as an eluent showing 93.24 % desorption capacity.  相似文献   

2.
The present study explores the effectiveness of Saraca indica leaf powder, a surplus low value agricultural waste, in removing Pb ions from aqueous solution. The influence of pH, biomass dosage, contact time, particle size and metal concentration on the removal process were investigated. Batch studies indicated that maximum biosorption capacity for Pb was 95.37% at the pH 6.5. The sorption process followed the first order rate kinetics. The adsorption equilibrium data fitted best to both Langmuir and Freundlich isotherms. Morphological changes observed in scanning electron micrographs of untreated and metal treated biomass confirmed the phenomenon of biosorption. Fourier transform infrared spectroscopy of native and exhausted leaf powder confirmed lead biomass interactions responsible for sorption. Acid regeneration was tried for several cycles with a view to recover the sorbed metal ion and also to restore the sorbent to its original state. The findings showed that Saraca indica leaf powder can easily be envisaged as a new, vibrant, low cost biosorbent for metal clean up operations.  相似文献   

3.
Magnesium hydroxide-coated pyrolytic bio-char composite was prepared by chemical precipitation, and the adsorption behavior of anionic dye (directly frozen yellow) onto magnesium hydroxide-coated pyrolytic bio-char was investigated in the batch mode. The Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and X-ray fluorescence spectroscopy of adsorbents were characterized. Adsorption studies were performed at different pH, salt concentration, contacting time and dye concentration. The pH value of the solution influenced the adsorption capacity significantly, and adsorption is favored of pH 6–8. Salt coexisted in solution increased slightly directly frozen yellow adsorption capacity. The isotherm data were analyzed by Langmuir and Freundlich isotherm model, and Langmuir model was better to predict the equilibrium data. Thermodynamic calculations showed that the adsorption was a spontaneous and endothermic process. Exhausted magnesium hydroxide-coated pyrolytic bio-char was treated by microwave irradiation, and yield of regeneration was 98 % in the case of microwave irradiated time 5 min at 320 W. The magnesium hydroxide-coated pyrolytic bio-char can be reused.  相似文献   

4.
Metal-complex dyes are widely used in textile industry, but harmful to the environment and human health due to aromatic structure and heavy metal ions. The objective of this work was to evaluate the adsorption potential of bamboo biochar for the removal of metal-complex dye acid black 172 from solutions. Freundlich model was more suitable for the adsorption process of bamboo biochar than Langmuir isotherm, indicating multilayer adsorption of acid black 172 on a heterogeneous bamboo biochar surface. Adsorption kinetics analysis of pseudo-second-order and Weber–Morris models revealed that intraparticle transport was not the only rate-limiting step. The bamboo biochar exhibited a good adsorption performance even at high ionic strength. Analysis based on the artificial neural network indicated that the temperature with a relative importance of 29 % appeared to be the most influential parameter in the adsorption process for dye removal, followed by time, ionic strength, pH and dye concentration.  相似文献   

5.
Biosorption is a promising technology for the removal of heavy metals from industrial wastes and effluents. In the present study, biosorption of Pb2+, Cu2+, Fe2+ and Zn2+ onto the dried biomass of Eucheuma denticulatum (Rhodophyte) was investigated as a function of solution pH, contact time, temperature and initial metal ion concentration. The experimental data were evaluated by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The sorption isotherm data followed Langmuir and Freundlich models, and the maximum Langmuir monolayer biosorption capacity was found as 81.97, 66.23, 51.02 and 43.48 mg g?1 for Pb2+, Cu2+, Fe2+ and Zn2+, respectively. The sorption kinetic data followed pseudo-second-order and intraparticle diffusion models. Thermodynamic study revealed feasible, spontaneous and endothermic nature of the sorption process. Fourier transform infrared analysis showed the presence of amine, aliphatic, carboxylate, carboxyl, sulfonate and ether groups in the cell wall matrix involved in metal biosorption process. A total of nine error functions were applied in order to evaluate the best-fitting models. We strongly suggest the analysis of error functions for evaluating the fitness of the isotherm and kinetic models. The present work shows that E. denticulatum can be a promising low-cost biosorbent for removal of the experimental heavy metals from aqueous solutions. Further study is warranted to evaluate its potential for the removal of heavy metals from the real environment.  相似文献   

6.
This study reports the potential ability of non-living biomass of Cabomba caroliniana for biosorption of Cr(III) and Cr(VI) from aqueous solutions. Effects of contact time, biosorbent dosage, pH of the medium, initial concentration of metal ion and protonation of the biosorbent on heavy metal–biosorbent interactions were studied through batch sorption experiments. Cr(III) was sorbed more rapidly than Cr(VI) and the pH of the medium significantly affected the extent of biosorption of the two metal species differently. Surface titrations showed that the surface of the biosorbent is positively charged at low pH while it is negatively charged at pH higher than 4.0. Protonation of the biosorbent increased its capacity for removal of Cr(III), while decreasing that of Cr(VI). FT-IR spectra of the biosorbent confirmed the involvement of –OH groups on the biosorbent surface in the chromium removal process. Kinetic and equilibrium data showed that the sorption process of each chromium species followed pseudo second-order kinetic model and both Langmuir and Freundlich isothermal models. A possible mechanism for the biosorption of chromium species by non-living C. caroliniana is suggested.  相似文献   

7.
施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验研究   总被引:8,自引:1,他引:7  
在金属硫化物的表生氧化过程中,施氏矿物是最常见的一种次生矿物.施氏矿物具有粒度小、比表面积大、表面吸附能高的特点,能够吸附环境流体中的重金属离子和微生物细胞,从而影响重金属元素及微生物的表生地球化学行为.利用化学合成的施氏矿物,开展了施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验.结果显示:施氏矿物对金属Cu2+及氧化亚铁硫杆菌均有较强的吸附性;施氏矿物对Cu2+的吸附基本符合Langmuir吸附模型,而对氧化亚铁硫的吸附行为不符合Langmuir模型,可用Freundlich模型描述;施氏矿物的存在对流体中微生物的活动性及其地球化学行为有重要影响,可能会降低氧化菌分解金属硫化物的效率.  相似文献   

8.
研究了ZH型重金属螯合纤维对水溶液中Sr~(2+)的吸附行为,考察了pH值、纤维加入量、Sr~(2+)初始浓度、作用时间等对吸附行为的影响,并采用SEM、EDS和FTIR等现代分析测试手段探讨了ZH型重金属螯合纤维对Sr~(2+)的吸附机制。结果表明,在pH值为7.0、纤维加入量为2.0 g/L、Sr~(2+)初始质量浓度为50 mg/L的条件下,纤维对Sr~(2+)的吸附在4 h左右基本达到平衡。实验条件下ZH型重金属螯合纤维对Sr~(2+)的最大吸附量可达26.22 mg/g。等温吸附拟合结果表明,ZH型重金属螯合纤维对Sr~(2+)的吸附可能是以单分子层为主的单分子层和多分子层吸附共同作用的结果。纤维对Sr~(2+)的动力学吸附过程符合准二级动力学模型。红外光谱分析表明Sr~(2+)与纤维上—NH_2和—COOH等基团进行配位络合从而吸附在纤维表面,—CH_2—和C=CH_2等基团参与此吸附过程。能谱分析表明Sr~(2+)与纤维上Na~+和Ca~(2+)还存在着离子交换作用。  相似文献   

9.
Adsorption kinetic and equilibrium studies of two reactive dyes, namely, Reactive Red 31 and Reactive Red 2 were conducted. The equilibrium studies were conducted for various operational parameters such as initial dye concentration, pH, agitation speed, adsorbent dosage and temperature. The initial dye concentration was varied from 10 - 60 mg/L, pH from 2–11, agitation speed from 100–140 rpm, adsorbent dosage from 0.5 g to 2.5 g and temperature from 30 °C -50 °C respectively. The activated carbon of particle size 600 μm was developed from preliminary tannery sludge. The dye removal capacity of the two reactive red dyes decreased with increasing pH. The zero point charge for the sludge carbon was 9.0 and 7.0 for the two dyes, respectively. Batch kinetic data investigations on the removal of reactive dyes using tannery sludge activated carbon have been well described by the lagergren plots. It was suggested that the Pseudo second order adsorption mechanism was predominant for the sorption of the reactive dyes onto the tannery sludge based carbon. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data fitted well with Langmuir model than the Freundlich model. The maximum adsorption capacity(q0) from Langmuir isotherm were found to have increased in the range of 23.15–39.37 mg/g and 47.62–55.87 mg/g for reactive dyes reactive red 31 and reactive red 2, respectively.  相似文献   

10.
The adsorption capacity of raw and sodium hydroxide-treated pine cone powder in the removal of methylene blue (MB) from aqueous solution was investigated in a batch system. It was found that the base modified pine cone exhibits large adsorption capacity compared with raw pine cone. The extent of adsorption capacity was increased with the increase in NaOH concentration. Overall, the extent of MB dye adsorption increased with increase in initial dye concentration, contact time, and solution pH but decreased with increase in salt concentration and temperature for both the systems. Surface characteristics of pine cone and base modified pine cone were investigated using Fourier transform infrared spectrophotometer and scanning electron microscope. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was found to be 129.87 mg g?1 at solution pH of 9.02 for an initial dye concentration of 10 ppm by raw pine cone. The base modified pine cone showed the higher monolayer adsorption capacity of 142.25 mg g?1 compared with raw pine cone biomass. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. The various kinetic models, such as pseudo-first-order model, pseudo-second-order model, intraparticle diffusion model, double-exponential model, and liquid film diffusion model, were used to describe the kinetic and mechanism of adsorption process. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on other models. The different kinetic parameters, including rate constant, half-adsorption time and diffusion coefficient, were determined at different physicochemical conditions. A single-stage bath adsorber design for the MB adsorption onto pine cone and modified pine cone has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters, such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0) and standard entropy (ΔS 0), were also calculated.  相似文献   

11.
The removal of poisonous Pb (II) from wastewater by different low-cost abundant adsorbents was investigated. Rice husks, maize cobs and sawdust, were used at different adsorbent/metal ion ratios. The influence of pH, contact time, metal concentration, adsorbent concentration on the selectivity and sensitivity of the removal process was investigated. The adsorption efficiencies were found to be pH dependent, increasing by increasing the solution pH in the range from 2.5 to 6.5. The equilibrium time was attained after 120 min and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 gm. The equilibrium adsorption capacity of adsorbents used for lead were measured and extrapolated using linear Freundlich, Langmuir and Temkin isotherms and the experimental data were found to fit the Temkin isotherm model.  相似文献   

12.
Open burnt clay was studied as a potential adsorbent for the adsorption of Congo red (a reactive dye) from aqueous solution. The effect of contact time, pH, adsorbent dosage and temperature were studied. It was observed that the amount of Congo red retained increase with decreasing pH and increasing initial concentration. Removal percentage at pH 2 and 3 are almost same. The adsorption capacity of regenerated burnt clay was showed more than 98 % recovery of the adsorption efficiency of initial virgin adsorbent. The equilibrium data were described well by both Langmuir and Freundlich isotherm model. The adsorption capacity of some natural adsorbents, namely rice husk, wood charcoal, tea waste etc. were also investigated and compared with that of open burnt clay.  相似文献   

13.
Arsenic is a ubiquitous element in the environment and occurs naturally in both organic and inorganic forms. Under aerobic condition, the dominant form of arsenic in waters is arsenate, which is highly mobile and toxic. Arsenic poisoning from drinking water remains a serious world health issue. There are various standard methods for arsenic removal from drinking waters (coagulation, sorption, ion-exchange reactions or methods of reverse osmosis) and alternative methods, such as biosorption. Biosorption of arsenic from natural and model waters by native or chemically modified (with urea or ferric oxyhydroxides) plant biomass prepared from sawdust of Picea abies was studied. The kinetic of the adsorption process fitted well the pseudo second order adsorption model and equilibrium was achieved after 2 h. The results showed that biosorption was well described by both Langmuir and Freundlich isotherms. The maximum biosorption capacity of the sawdust modified with ferric oxyhydroxides, evaluated by Langmuir adsorption model, was 9.259 mg/g, while the biosorption capacity of unmodified biosorbent or biosorbent modified with urea was negligible. The adsorption capacity is comparable to results published by other authors, suggesting that the prepared chemically modified biosorbent has potential in remediation of contaminated waters.  相似文献   

14.
In this work, a low-cost lignocellulosic adsorbent with high biosorption capacity is proposed, suitable for the efficient removal of hexavalent chromium from water and wastewater media. The adsorbent was produced by autohydrolyzing Scots Pine (Pinus Sylvestris) sawdust. The effect of the autohydrolysis conditions, i.e., pretreatment time and temperature, on hexavalent chromium biosorption was investigated using energy-dispersive X-ray spectroscopy (EDS) and UV–visible spectrophotometry. The Freundlich, Langmuir, Sips, Radke-Prausnitz, Modified Radke-Prausnitz, Tóth, UNILAN, Temkin and Dubinin-Radushkevich adsorption capacities and the rate constant values for pseudo-first- and pseudo-second-order kinetics indicated that the autohydrolyzed material exhibits significantly enhanced hexavalent chromium adsorption properties comparing with the untreated sawdust. The Freundlich’s adsorption capacity K F increased from 2.276 to 8.928 (mg g?1)(L mg?1)1/n , and the amount of hexavalent chromium adsorbed at saturation (Langmuir constant q m) increased from 87.4 to 345.9 mg g?1, indicating that autohydrolysis treatment at 240 °C for 50 min optimizes the adsorption behavior of the lignocellulosic material.  相似文献   

15.
Biofilms wasted from biotrickling filters was dried and used as biosorbent for Cd(II) removal from aqueous solutions. The adsorption condition and effect, adsorption isotherms and kinetics of Cd(II) removal were investigated, and the effects of competitive metal ions on Cd(II) removal were also examined. Results showed that the dry waste biofilms reached the maximum adsorption capacity of 42 mg/g of Cd(II) at 25 °C for 120 min when the initial concentration of Cd(II) and their pH were 50 mg/L and 6.0, respectively. Under these conditions, the removal efficiency of Cd(II) reached to 89.3% when the biosorbent dosage was 2.0 g/L. The Langmuir isotherm model correlated with the isotherm data better than the Freundlich isotherm model, and the pseudo-second-order model fitted the kinetic data better than the pseudo-first-order model. These results indicated that the adsorption was monolayer accompanied with chemical adsorption. In the presence of other metal ions, divalent metal ions of Ca and Zn inhibited the performance of Cd(II) biosorption significantly, while Na(I), K(I) and Fe(III) which had a higher or lower valence than Ca(II) affected slightly when containing 50 mg/L Cd(II), 0.5 g/L adsorbent dosage and pH 6.0. The analyses of scanning electron microscopy and Fourier transform infrared spectroscopy illuminated that the biosorbent had porous structures and the amide group was the majorly responsible for Cd(II) removal. Dry biofilms were novel sorbents for effective removal Cd(II), and it could be reused and recycled if necessary.  相似文献   

16.
The biosorption of chromium (VI) ions from aqueous solutions by two adsorbents viz. mango and neem sawdust was studied under a batch mode. An initial pH of 2.0 was most favorable for chromium (VI) removal by both the adsorbents. The results obtained for the final concentration of chromium (VI) and chromium (DI) at a pH range of 2–8 indicated that a combined effect of biosorption and reduction was involved in the chromium (VI) removal specially when the pH value is lower than 3. The maximum loading capacity was calculated from adsorption isotherms by applying the Langmuir model and found to be higher for neem sawdust (58.82 mg/g). Evaluation of experimental data in terms of biosorption kinetics showed that the biosorption of chromium (VI) by neem sawdust followed pseudo second-order kinetics. Therefore, the rate limiting step may be chemical sorption or chemisorption. The efficiency of this process was examined in using tannery wastewater contaminated with chromium (VI) ions in column mode.  相似文献   

17.
The batch removal of Cr(VI) from aqueous solution using lignocellulosic solid wastes such as sawdust and pine leaves under different experimental conditions was investigated in this study. The influence of pH, temperature, contact time, initial concentration of Cr(VI) and particle size on the chromium removal was investigated. Adsorption of Cr(VI) is highly pH-dependent and the results indicate that the optimum pH for the removal is 2. The capacity of chromium adsorption at equilibrium by these natural wastes increased with absorbent concentration. Temperature in the range of 20–60 °C showed a restricted effect on the adsorption capacity of pine leaves, but had a considerable effect on the adsorption capacity of sawdust. The capacity of chromium adsorption at the equilibrium increased with the decrease in particle sizes. The suitability of adsorbents was tested with Langmuir and Freundlich isotherms and their constants were evaluated. Results indicated that the Freundlich model gave a better fit to the experimental data in comparison with the Langmuir equation. The study showed that lignocellulosic solid wastes such as sawdust and pine leaves can be used as effective adsorbents for removal of Cr(VI) from wastewater.  相似文献   

18.
This paper presents the removal of hazardous hexavalent chromium from liquid waste streams using divinylbenzene copolymer resin Amberlite IRA 96. Important sorption parameters such as contact time, pH, resin dosage and initial metal concentration were studied at 30?°C. The kinetic study was conducted using pseudo-first and pseudo-second-order kinetics at 30?°C. The sorption process was found to be pH dependent. Maximum removal was obtained at pH 2 under optimized conditions. The sorption process was rapid and 99?% of the removal was achieved in first 30?min. The equilibrium data were fitted to both Langmuir and Freundlich models. The better regression coefficient (R 2) in Freundlich model suggests the multilayer sorption process. The value of Gibbs free energy for sorption process was found to be ?12.394?kJmol?1. The negative value indicated the spontaneity of the sorption process. Scanning electron microscope and energy dispersive X-ray spectroscopy studies were conducted to find the role of surface morphology during sorption process. The Fourier transform infrared study was conducted to identify the functional groups responsible for interaction between the resin and chromium. Desorption and regeneration studies were also carried out.  相似文献   

19.
Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater.Laboratory experimental investigation was carried out to identify the effect of pH and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that pH 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 min for lead, 75 min for copper and nickel, with lead recording 100 %, copper 97 % and nickel 55 % removal, having a trend of Pb2+ > Cu2+ > Ni2+. Langmuir model had higher R2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.  相似文献   

20.
The Mediterranean seagrass Posidonia oceanica (L.) leaf sheaths were used as low cost, available and renewable biological adsorbent for the removal of reactive textile dye from aqueous solutions. Batch experiments were carried out for sorption kinetics and isotherms. Operating variables studied were temperature, pH and chemical pre-treatment. Biosorption capacity seems to be enhanced by increasing the temperature. Maximum colour removal was observed at pH 5. Pre-treating fibres with H3PO4 and HNO3 solutions increased the adsorption efficiency up to 80 %. Experimental sorption kinetic data were fitted to both Lagergren first-order and pseudo-second-order models and the data were found to follow first-order equation for raw fibres and pseudo-second-order for pre-treated ones. Equilibrium data were well represented by the Freundlich isotherm model for all tested adsorption systems. Besides, the thermodynamic study has showed that the dye adsorption phenomenon onto P. oceanica biomass was favourable, endothermic and spontaneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号