首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The popularity of applying filtering theory in the environmental and hydrological sciences passed its first climax in the 1970s. Like so many other new mathematical methods it was simply the fashion at the time. The study of groundwater systems was not immune to this fashion, but neither was it by any means a prominent area of application. The spatial-temporal characteristics of groundwater flow are customarily described by analytical or, more frequently, numerical, physics-based models. Consequently, the state-space representations associated with filtering must be of a high order, with an immediately apparent computational over-burden. And therein lies part of the reason for the but modest interest there has been in applying Kalman filtering to groundwater systems, as reviewed critically in this paper. Filtering theory may be used to address a variety of problems, such as: state estimation and reconstruction, parameter estimation (including the study of uncertainty and its propagation), combined state-parameter estimation, input estimation, estimation of the variance-covariance properties of stochastic disturbances, the design of observation networks, and the analysis of parameter identifiability. A large proportion of previous studies has dealt with the problem of parameter estimation in one form or another. This may well not remain the focus of attention in the future. Instead, filtering theory may find wider application in the context of data assimilation, that is, in reconstructing fields of flow and the migration of sub-surface contaminant plumes from relatively sparse observations. Received: October 27, 1997  相似文献   

2.
Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the joint approach. Furthermore, the dual estimation is proven to be very effective computationally, recovering accurate estimates at a reasonable cost.  相似文献   

3.
In this paper, we perform an inverse method to simultaneously estimate aquifer parameters, initial condition, and boundary conditions in groundwater modelling. The parameter estimation is extended to a complete inverse problem that makes the calibrated groundwater flow model more realistic. The adjoint state method, the gradient search method, and the least square error algorithm are combined to build the optimization procedure. Horizontal two‐dimensional groundwater flow in a confined aquifer is exemplified to demonstrate the correlation between unknowns, the contribution of observation, as well as the suitability of applying the inverse method. The correlation analysis shows the connection between storage coefficient and initial condition. Besides, transmissivity and boundary conditions are also highly correlated. More observations at different location and time are necessary to provide sufficient information. A time series of unsteady head is requested for estimation of storage coefficient and initial condition. Observation near boundary is very effective for boundary condition estimation. The observation at pumping well mostly contributes to the estimation of transmissivity. According to all observations, it is possible to identify parameters, initial condition, and boundary condition simultaneously. Furthermore, the results not only illustrate the traditional assumption of known boundary condition but also initial condition, which may cause an incorrect estimation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Digital filters are useful tools for assessing the contribution of groundwater to total river flow. Several of those filters have been proposed in the last decades. One of the last contributions on this subject was given by Ekchardt (2005) who proposed a more general form of a digital baseflow filter and showed that some of the most used filters are special cases of this general form. This new filter has the inconvenience of having two parameters, one of them may be obtained directly from recession analysis, but the other (maximum baseflow index (BFImax)) is routinely estimated by a priori defined values according to the predominant geological characteristics of the drainage basin. In this short communication, we propose a method to estimate BFImax by a backwards filtering operation. The method was applied using data from 15 gauging stations in Brazil, with a varied range of groundwater contribution to streamflow. Results of the new estimation method for the BFImax parameter are coherent with the values which would be adopted by considering geological characteristics of the river basins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In an aquifer system with complex hydrogeology, mixing of groundwater with different ages could occur associated with various flow pathways. In this study, we applied different groundwater age‐estimation techniques (lumped parameter model and numerical model) to characterize groundwater age distributions and the major pathways of nitrate contamination in the Gosan agricultural field, Jeju Island. According to the lumped parameter model, groundwater age in the study area could be explained by the binary mixing of the young groundwater (4–33 years) and the old water component (>60 years). The complex hydrogeologic regimes and local heterogeneity observed in the study area (multilayered aquifer, well leakage hydraulics) were particularly well reflected in the numerical model. The numerical model predicted that the regional aquifer of Gosan responded to the fertilizer applications more rapidly (mean age: 9.7–22.3 years) than as estimated by other models. Our study results demonstrated that application and comparison of multiple age‐estimation methods can be useful to understand better the flow regimes and the mixing characteristics of groundwater with different ages (pathways), and accordingly, to reduce the risk of improper groundwater management plans arising from the aquifer heterogeneity.  相似文献   

7.
8.
Berg SJ  Hsieh PA  Illman WA 《Ground water》2011,49(6):815-829
For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated.  相似文献   

9.
D. A. Hughes 《水文研究》2010,24(6):767-774
Understanding hydrological processes has always been important to the development and successful application of conceptual hydrological models. It can also contribute to informed water resources management, particularly in the context of understanding the potential impacts of both land use and climate change. Improved conceptual and quantitative understanding of near‐surface hydrological processes emerged through field studies during the 1960s to1980s; however, there remains a degree of ambiguity about the processes that link surface water and groundwater. This is especially the case in South Africa where a great deal of confusion has arisen about the source of the ‘baseflow’ signal in stream flow observations. This paper suggests that fracture flow within the unsaturated zone could have a lateral component and therefore re‐emerge and contribute to stream flow in catchments with relatively steep topography. The implication is that ‘baseflows’ could be made up of groundwater contributions (caused by intersection of the water table with stream channels) as well as an unsaturated zone flow component. Evidence for the existence of the process is presented on the basis of small‐scale observations and interpretations of stream flow observations. The potential importance of the process relates to interpreting different methods of recharge estimation, assessing the impacts of groundwater abstraction on stream flow, as well as the application and interpretation of the results of hydrological models. The conclusions are that the process does exist, but that there is less than conclusive evidence for its importance. There is therefore a need for further studies that can quantify the scale of the process and therefore its importance. Only then will it be possible to develop a consistent understanding of the processes of surface water and groundwater interaction and therefore manage water resources in a truly integrated manner. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

This paper presents the program KALMOD which has been developed to enable the execution of the integration of the Kalman filtering and the numerical groundwater flow model MODFLOW on microcomputers. The program can be applied to quantify and reduce the uncertainty of the groundwater flow model, and to analyse and design groundwater monitoring networks. KALMOD consists of a preprocessor, a processor and a postprocessor. The preprocessor acts as an interface between the user and the processor. The processor manipulates the measurement processes and carries out the filtering tasks. The filtering algorithm is implemented so that it is relatively efficient with respect to computer memory and execution time. The postprocessor was designed to present the model results in graphics. The program is suitable for small scale problems and for educational purposes.  相似文献   

11.
Groundwater arsenic (As) presents a public health risk of great magnitude in densely populated Asian delta regions, most acutely in the Bengal Basin (West Bengal, India and Bangladesh). Research has focused on the sources, mobilisation, and heterogeneity of groundwater As, but a consistent explanation of As distribution from local to basin scale remains elusive. We show for the Bengal Aquifer System that the numerous, discontinuous silt‐clay layers together with surface topography impose a hierarchical pattern of groundwater flow, which constrains As penetration into the aquifer and controls its redistribution towards discharge zones, where it is re‐sequestered to solid phases. This is particularly so for the discrete periods of As release to groundwater in the shallow subsurface associated with sea level high‐stand conditions of Quaternary inter‐glacial periods. We propose a hypothesis concerning groundwater flow ( S ilt‐clay layers I mpose H ierarchical groundwater flow patterns constraining A rsenic progression [SIHA]), which links consensus views on the As source and history of sedimentation in the basin to the variety of spatial and depth distributions of groundwater As reported in the literature. SIHA reconciles apparent inconsistencies between independent, in some cases contrasting, field observations. We infer that lithological and topographic controls on groundwater flow, inherent to SIHA, apply more generally to deltaic aquifers elsewhere. The analysis suggests that groundwater As may persist in the aquifers of Asian deltas over thousands of years, but in certain regions, particularly at deeper levels, As will not exceed low background concentrations unless groundwater flow systems are short‐circuited by excessive pumping.  相似文献   

12.
ABSTRACT

The application of artificial neural networks (ANNs) has been widely used recently in streamflow forecasting because of their ?exible mathematical structure. However, several researchers have indicated that using ANNs in streamflow forecasting often produces a timing lag between observed and simulated time series. In addition, ANNs under- or overestimate a number of peak flows. In this paper, we proposed three data-processing techniques to improve ANN prediction and deal with its weaknesses. The Wilson-Hilferty transformation (WH) and two methods of baseflow separation (one parameter digital filter, OPDF, and recursive digital filter, RDF) were coupled with ANNs to build three hybrid models: ANN-WH, ANN-OPDF and ANN-RDF. The network behaviour was quantitatively evaluated by examining the differences between model output and observed variables. The results show that even following the guidelines of the Wilson-Hilferty transformation, which significantly reduces the effect of local variations, it was found that the ANN-WH model has shown no significant improvement of peak flow estimation or of timing error. However, combining baseflow with streamflow and rainfall provides important information to ANN models concerning the flow process operating in the aquifer and the watershed systems. The model produced excellent performance in terms of various statistical indices where timing error was totally eradicated and peak flow estimation significantly improved.
Editor D. Koutsoyiannis; Associate editor Y. Gyasi-Agyei  相似文献   

13.
In cases when an equivalent porous medium assumption is suitable for simulating groundwater flow in bedrock aquifers, estimation of seepage into underground mine workings (UMWs) can be achieved by specifying MODFLOW drain nodes at the contact between water bearing rock and dewatered mine openings. However, this approach results in significant numerical problems when applied to simulate seepage into an extensive network of UMWs, which often exist at the mine sites. Numerical simulations conducted for individual UMWs, such as a vertical shaft or a horizontal drift, showed that accurate prediction of seepage rates can be achieved by either applying grid spacing that is much finer than the diameter/width of the simulated openings (explicit modeling) or using coarser grid with cell sizes exceeding the characteristic width of shafts or drifts by a factor of 3. Theoretical insight into this phenomenon is presented, based on the so-called well-index theory. It is demonstrated that applying this theory allows to minimize numerical errors associated with MODFLOW simulation of seepage into UMWs on a relatively coarse Cartesian grid. Presented examples include simulated steady-state groundwater flow from homogeneous, heterogeneous, and/or anisotropic rock into a vertical shaft, a horizontal drift/cross-cut, a ramp, two parallel drifts, and a combined system of a vertical shaft connected to a horizontal drift.  相似文献   

14.
地下水位中地震前兆信息提取方法研究   总被引:1,自引:0,他引:1  
地下水位观测值的影响因素包含降雨、气压、固体潮、地质构造作用等.为凸显地质构造作用对地下水位的影响,需要滤除降雨、固体潮、气压等因素的影响量.本文首先分离地下水位受固体潮、气压作用的影响量;然后依据降雨影响地下水位可以分为长期和短期变化的思路,利用基流分割方法对地下水位的两种变化进行分离,确定地下水位的降雨影响量;最后分析各分量异常与地震活动性关系,探查其中包含的地震前兆信息.本文的研究思路为地下水位观测值中地震前兆信息研究提供了一套可供尝试的系统技术方法.  相似文献   

15.
Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flow and novel model set‐up, which simulates the interaction between groundwater and sewer flow. The study area has a separate waste water sewer system, but the discharged volumes from the system are approximately twice the volumes from a tight system without infiltration. The model set‐up makes use of two commercial models: mike she for simulation of groundwater transport and mike urban (mouse ) [DHI, Hørsholm, Denmark] for simulation of sewer flow. By simulating the groundwater level and calibrating infiltration coefficients against sewer flow measurements, it has been possible to estimate the average infiltration to the sewer system with satisfying results. The infiltration processes are indeed complicated and to a large degree heterogeneous throughout the sewer system. The paper shows contribution from both saturated and unsaturated groundwater zones, which makes the modelling process complex. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Estimation of hydraulic parameters is essential to understand the interaction between groundwater flow and seawater intrusion. Though several studies have addressed hydraulic parameter estimation, based on pumping tests as well as geophysical methods, not many studies have addressed the problem with clayey formations being present. In this study, a methodology is proposed to estimate anisotropic hydraulic conductivity and porosity values for the coastal aquifer with unconsolidated formations. For this purpose, the one-dimensional resistivity of the aquifer and the groundwater conductivity data are used to estimate porosity at discrete points. The hydraulic conductivity values are estimated by its mutual dependence with porosity and petrophysical parameters. From these estimated values, the bilinear relationship between hydraulic conductivity and aquifer resistivity is established based on the clay content of the sampled formation. The methodology is applied on a coastal aquifer along with the coastal Karnataka, India, which has significant clayey formations embedded in unconsolidated rock. The estimation of hydraulic conductivity values from the established correlations has a correlation coefficient of 0.83 with pumping test data, indicating good reliability of the methodology. The established correlations also enable the estimation of horizontal hydraulic conductivity on two-dimensional resistivity sections, which was not addressed by earlier studies. The inventive approach of using the established bilinear correlations at one-dimensional to two-dimensional resistivity sections is verified by the comparison method. The horizontal hydraulic conductivity agrees with previous findings from inverse modelling. Additionally, this study provides critical insights into the estimation of vertical hydraulic conductivity and an equation is formulated which relates vertical hydraulic conductivity with horizontal. Based on the approach presented, the anisotropic hydraulic conductivity of any type aquifer with embedded clayey formations can be estimated. The anisotropic hydraulic conductivity has the potential to be used as an important input to the groundwater models.  相似文献   

17.
Groundwater temperature is a useful hydrogeological parameter that is easy to measure and can provide much insight into groundwater flow systems, but can be difficult to interpret. For measuring temperature directly in the ground, dedicated specifically designed monitoring wells are recommended since conventional groundwater wells are not optimal for temperature monitoring. Multilevel monitoring of groundwater temperature is required to identify contributions of different possible heat inputs (sources) on measured temperature signals. Interpreting temperature data as a cosine function, including period, average temperature, amplitude, and phase offset, is helpful. Amplitude dampening and increasing phase shift with distance from a boundary can be used for estimation of transport parameters. Temperature measurements at different depths can be used for evaluation of unknown parameters of analytical functions by optimization of regression fits in Python. These estimated parameters can be used to calculate temperatures at known water table depths which can be applied as a fixed transient boundary condition in MT3DMS to overcome the limitations of MT3DMS heat transport modeling in the unsaturated zone. In this study, temperature monitoring and modeling was used to evaluate the influence of a department store's heated basement foundation on groundwater temperature within a green space (city park), with the main outcome that 17 years after construction, the department store foundation has increased the mean groundwater temperature by 3.2 °C. Heat input evaluated by the MT3DMS model varied from 0.1 W/m2 at a distance of 100 m up to 12 W/m2 next to the building.  相似文献   

18.
River discharge in mountainous regions of the world is often dominated by snowmelt, but base flows are sustained primarily by groundwater storage and discharge. Although numerous recent studies have focused on base-flow discharge in mountain systems, almost no work has explicitly investigated the role of karst groundwater in these systems across a full range of flow conditions. We directly measured groundwater discharge from 48 karst springs in the Kaweah River and its five forks in the Sierra Nevada mountains, California, United States. Relationships between spring and river discharge showed that karst aquifers and springs provide significant storage and delayed discharge to the river. Regression models showed that, of all potential seasonal groundwater storage compartments in the river basin, the area of karst (0.1–4.4%) present provides the best explanation of base-flow recession in each fork of the Kaweah River (directly measured contributions from karst springs ranged from 3.5 to 16% during high-flow to 20 to 65% during base-flow conditions). These results show that, even in settings where karst represents a small portion of basin area, it may play an over-sized role in seasonal storage and water resources in mountain systems. Karst aquifers are the single most important non-snow storage component in the Kaweah River basin, and likely provide similar water storage capacities and higher base flows in other mountain river systems with karst when compared with systems without karst.  相似文献   

19.
Abstract

A simplified method has been developed for solving leaky aquifer non-Darcian flow hydraulics. The principle of volumetric approach is combined with the confined-aquifer, time-dependent drawdown equation in an observation well. The groundwater flow in the leaky aquifer is assumed to obey a non-Darcian flow law of exponential type. The results are obtained in the form of type-curve expressions from which the necessary bundles of curves are drawn for a set of selective non-Darcian flow aquifer parameters. Although application of the methodology appears as rather limited but it provides a scientific contribution and extension of leaky aquifer theory towards nonlinear flow conditions. The methodology developed herein is applied to some actual field data from the eastern sedimentary basin in the Kingdom of Saudi Arabia.  相似文献   

20.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号