首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terrestrial geochemistry of Cd,Bi, Tl,Pb, Zn and Rb   总被引:1,自引:0,他引:1  
About 2000 common magmatic, metamorphic and sedimentary rocks and rockforming minerals contained in 465 individual samples have been analyzed for 6 trace metals and potassium with high precision, mainly by combined distillation and AAS methods. Estimates of average abundances in the continental crust are: 98 ppb Cd. 82 ppb Bi. 490 ppb Tl, 14.8 ppm Pb, 77 ppm Zn and 98 ppm Rb (K/Rb: 223). These averages are close to the mean concentrations of the 6 elements in sedimentary and in low to medium grade metamorphic rocks. In relation to the upper mantle the earth's crust has very effectively accumulated Rb, Pb, Tl (and Bi). Cd and Zn are equally distributed between the upper and lower crust. Bi, Tl, Rb, Pb and K are accumulated in the upper relative to the lower continental crust by factors between 3.5 and 1.4. This is mainly due to higher concentrations in granites and lower abundances in granulites relative to gneisses and schists. The five metals form large ions with bulk coefficients less than one for the partition between metamorphic rocks and anatectic granitic melts. The major hosts of Rb, Tl, Pb and Bi in rocks are minerals with 8- to 12-coordinated sites such as mica, K-feldspar, plagioclase etc. (except for some preference of Bi for sphene and apatite). As examples of significant correlations those of Pb with Tl, K, Bi and Rb in mafic rocks and of Bi with K, Rb, Tl and Pb in sedimentary rocks can be reported. In granites and gneisses hydroxyl containing Fe2+-Mg-silicates are major host minerals for Zn and Cd. Except in some carbonate rocks Cd has no preference for Ca minerals.  相似文献   

2.
王丹  郭敬辉  马旭东 《岩石学报》2021,37(2):341-355
英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)是地球早期大陆地壳最重要的组成部分。TTG的Nb/Ta比值变化不仅与它的成因相关,而且与早期构造环境和地壳分异过程关系紧密。本文选择阴山地块出露的TTG片麻岩及下地壳斜长角闪岩/麻粒岩包体作为研究对象,开展了寄主花岗闪长岩和同源镁铁质包体中的角闪石和黑云母的原位微区矿物的微量元素分析工作,以及TTG与非同源斜长角闪岩包体的全岩主微量元素分析工作。矿物化学研究结果表明,花岗闪长岩和同源镁铁质包体的角闪石具有相似的Mg#值,但是两者具有明显不同的Nb/Ta比值。镁铁质包体中的角闪石更富Cr、Ta,Nb/Ta比值为30~50;TTG岩石中的角闪石Cr和Ta含量偏低,但具有更高的Nb/Ta比值(38~70)。TTG和镁铁质包体中的角闪石Cr含量与Nb/Ta具有较好的负相关关系。全岩地球化学分析结果揭示,TTG片麻岩的具有高Nb/Ta比值(13~65,平均值31),斜长角闪岩和麻粒岩包体具有变化的Nb/Ta比值(10~56)。太古宙绿岩带中玄武质岩石的Nb/Ta平均值为~15,阴山地块斜长角闪岩和麻粒岩包体具有高的Nb/Ta比值,反映了这些代表基性下地壳的岩石经历了部分熔融作用或后期的交代作用,使其Nb/Ta比值发生改变。研究区具有高Nb/Ta比值的TTG可能来源于高Nb/Ta比值基性下地壳部分熔融,并继承了源区高Nb/Ta比值的特征。通过本文研究揭示,高Nb/Ta比值的TTG并非一定形成于俯冲带洋壳榴辉岩相部分熔融,下地壳富角闪石和黑云母的岩石部分熔融是形成高Nb/Ta比值TTG的一种重要途径。  相似文献   

3.
大青山-乌拉山变质杂岩立甲子基性麻粒岩主要由角闪二辉麻粒岩、含榴角闪二辉麻粒岩和黑云角闪二辉麻粒岩所组成,并以变形岩墙和不规则透镜体形式赋存于富铝片麻岩和花岗质片麻岩之中.立甲子基性麻粒岩中变质锆石含有单斜辉石(Cpx)+角闪石(Amp)+斜长石(Pl)+磷灰石(Ap)的包体矿物,与寄主岩石——基性麻粒岩矿物组合及其化学成分十分一致,相应的207 pb/206 Pb表面年龄变化于1933±39Ma ~ 1834±40Ma,加权平均年龄为1892±7Ma(MSWD =0.50,n=46),应代表立甲子基性麻粒岩原岩经历中低压麻粒岩相的变质时代.在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Nb、Zr、Ti)和稀土元素基本无变化,保持稳定.立甲子基性麻粒岩原岩属于拉斑玄武质岩石系列,其SiO2集中变化于45.58% ~51.40%,Mg#值集中介于41 ~54之间;在球粒陨石标准化稀土配分图中,立甲子基性麻粒岩具有平坦型的稀土配分曲线特征((La/Yb)cN=1.30~1.51),Eu异常不明显(Eu/Eu*=0.93~1.04).与显生宙岛孤拉斑玄武岩类似,立甲子基性麻粒岩所有样品皆具有Nb、Zr、Ti负异常特征.综合分析认为,立甲子基性麻粒岩原岩形成于2450~1930Ma,并于~1900Ma经历中低压麻粒岩相变质作用的改造,其主量元素和微量元素组成具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能是板块汇聚动力学背景下,岛弧构造环境中形成的辉长岩或辉绿岩.  相似文献   

4.
Origin of granites in an Archean high-grade terrane,southern India   总被引:4,自引:0,他引:4  
Archean deep-level granites in southern India are similar geochemically to young granites from continentalmargin arc systems. They exhibit light REE enriched patterns with variable, but chiefly positive Eu anomalies. This is in striking contrast to the negative Eu anomalies typical in high-level Archean granites. In addition, the deep-level granites are relatively enriched in Ba and Sr and depleted in total REE and high field strength elements (HFSE). One pluton, the Sankari granite, has unusually low contents of REE and HFSE. Most of the deep-level granites appear to represent cumulates with variable amounts of trapped liquid and of minor phases, resulting from fractional crystallization of a granitic parent. Such parental granitic magmas can be produced by batch melting of Archean tonalite at middle to lower crustal depths. The Sankari granite requires a tonalitic source depleted in REE and HFSE. Archean tonalites and tonalitic charnockites exhibit original igneous geochemical signatures and their average composition does not show a significant Eu anomaly. Hence, they cannot represent the positive Eu-anomaly complement to the negative Eu-anomaly, high-level granites. Our results suggest that Archean deep-level granites may represent this complement. Such granite may form in waterrich zones in the middle or lower crust and be produced in response to dehydration of the lower crust by a rising CO2-rich fluid phase.  相似文献   

5.
Summary New oxygen isotope data for metaluminous granites from the basement-dominated part of the Damara orogen (Namibia) range from 9.1 to 11.9‰. These data, together with previously published Sr, Nd and Pb isotope data indicate that these granites and associated peraluminous granites originated from felsic meta-igneous basement sources. New and unusually low oxygen isotope data for metaluminous granodiorites extend now the range of δ18O values from ca. 12 to 6‰ for this rock type. These low oxygen isotope values approach the values observed in mafic quartz diorites for which a model of derivation from depleted mafic lower crust has been established. In view of the higher Pb isotope ratios but lower oxygen isotope values of the granodiorites relative to the mafic quartz diorites, it is concluded that the granodiorites represent partial melts of an undepleted but strongly altered mafic lower crust. Most of the peraluminous and metaluminous granites and the metaluminous granodiorites have identical U–Pb monazite, allanite and zircon ages of ca. 510–500 Ma implying partial melting of distinct basement rocks of Archaean to Proterozoic age at the peak of regional high-grade metamorphism.  相似文献   

6.
Proterozoic basement outcrops in the vicinity of Battye Glacier, northern Prince Charles Mountains, are dominated by granulites and gneisses derived from felsic (granitoid) intrusive igneous rocks, and by pegmatites. Felsic orthopyroxene granulites, garnet leucogneisses and garnet pegmatites have major and trace element compositions of highly felsic, but not strongly fractionated, granites. The garnet leucogneisses and garnet pegmatites have S‐type characteristics, whereas the felsic granulites are probably I‐type, although their high Zr+Nb+Y+Ce abundances suggest possible A‐type affinities. Intermediate orthopyroxene ± clinopyroxene granulites mostly resemble I‐type quartz diorites, except for a small subgroup of samples (characterised by low Na2O and K2O, and high MgO, Ni, Cr and HREE) of uncertain affinities and significance. Element ratios involving LILE (e.g. K/Rb, Rb/Ba, Rb/Sr, K/La, La/Th) closely match those typical of the inferred granitoid protoliths, suggesting that these rocks have experienced relatively little LILE depletion (except possibly for U) during regional metamorphism. It is therefore inferred that metamorphism was probably broadly isochemical. Because the felsic and intermediate granulites and garnet leucogneisses are Sr‐depleted, Y‐undepleted and mostly have negative Eu anomalies they are inferred to be the products of partial melting of felsic crustal sources leaving plagioclase‐bearing residua. Plagioclase fractionation during crystallisation could also account for these characteristics, but K/Rb, Rb/Ba and Rb/Sr ratios in these rocks are not consistent with strong fractionation of feldspar. Garnet pegmatites differ chemically from garnet leucogneisses mainly in their lower Fe, Ti, Nb, Zn, Zr, Th and REE abundances and positive Eu anomalies, related to lower garnet, ilmenite and zircon contents in the garnet pegmatites. A genetic link between these two rock types, probably involving fractionation of these minerals during partial melting or crystallisation, is inferred. Incompatible‐element abundances suggest that generation of the Battye Glacier granitic magmas from felsic crust might have occurred in a mature continental magmatic arc possibly well removed from an active subduction trench or, perhaps, in an intracontinental setting.  相似文献   

7.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

8.
Major and 31 minor elements have been determined in 39 large samples of Variscan granitoids from 6 plutons or intrusions from the South Bohemian Batholith (Rastenberg, Weinsberg, Mauthausen, Schrems, Eisgarn and Gebharts). The granitoids are mainly granites but also diorites, tonalites, trondhjemites, granodiorites. Average concentrations of Ba, Th, U, La, Ce, Pb, Nd, Sr and K in the Weinsberg, Mauthausen and Schrems granites exceed those in average felsic I- and S-type granites by factors ranging between 2.1 and 1.3. The granites melts formed at waterundersaturated conditions and intruded at 10 to 15 km depth during late-tectonic and post-tectonic phases of the Variscan orogeny (about 330 to 300 Ma ago). Hydrothermal or low temperature alteration is excluded for the majority of samples from a study of oxygen isotopes. The thickness of the plutons is estimated at about 6 km from heat balance constraints. By analogy with experimental partial melting, three different sources of the granitoids can be identified and chemically characterized: (1) The trondhjemites, tonalites and diorites in the early Rastenberg pluton are products of 15 to 40% melting respectively of a mafic (partly amphibolitic) lower crust. Redwitzites from the West Bohemian Massif which are comparable in age partly resemble the Rastenberg rocks. The mafic sources of the Rastenberg granitoids and redwitzites are crustally contaminated as reflected in their Sr-Nd isotopes. (2) The very large syn-tectonic Weinsberg pluton was formed from about 30% partial melting of a tonalitic lower crust at 800 to 850°C. Its low proportion of ca. 10% restite has a ferrodioritic composition. The post-tectonic fine-grained Mauthausen and Schrems granites which tend to a granodioritic mode, are very low in restite and are also products of melting of a tonalitic source. (3) The youngest (leuco-)granite, the Eisgarn pluton (high in Si, P, Li, Rb, Cs, U,87Sr/86Sr and low in Ca, Sr, Ba) reflects a pelitic source. The change from mafic to tonalitic to pelitic source composition for the granitoid sequence may indicate that the depth of melt formation decreased with time. The concentration of heavy rare earth elements decreased from Weinsberg to Eisgarn granites which indicates an increasing proportion of garnet in the source. The orogenic heat conformable with a heat flow of about 100 mWm-2 was provided by mafic intrusions. An alternative would be a drastic increase of the crustal thickness which cannot be recognized by barometry of the associated metamorphic rocks. Exposed metamorphic country rocks occur in higher amphibolite facies indicating about 5 kbar pressure. Mafic intrusions contain gabbros (Kleinzwettl) or have formed (quartz-)diorites (Gebharts), the latter being contaminated by granitic melts from partial melting of the wall rocks (MASH process). Largescale contamination by crustal materials can be observed in 18O and in Sr-Nd isotopes. The major mafic activity was probably caused by depression of solidus temperatures in the mantle wedge above a subduction zone where water was available from dehydration of subducted ocean crust. This water initiated partial melting of ultramafic rocks and metasomatism in the uppermost mantle above the level of melting. The water also mobilized highly incompatible elements (Ba, Th, U, La, Ce, Pb, Nd, Sr and K) from the uppermost mantle and transported them into the lower crust. Indicators of a nearby subduction or collision zone of Late Variscan age in addition to the specific association of granitoidal rocks are abundant upper mantle tectonites. An alternate or additional source of metasomatic fluids may have been dehydration of lower crustal rocks during Variscan high-grade metamorphism.Dedicated to Prof. Dr J. Zemann on the occasion of his 70th birthday  相似文献   

9.
Early Ordovician A-type granites in the northeastern (NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region. This research presents new zircon U–Pb ages and whole-rock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2O compositions and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous feature with A/CNK values of 0.98–1.14. The rocks have a ∑REE composition of 249.98–423.94 ppm, and are enriched in LREE with (La/Yb)N values of 2.87–9.87, and display obvious Eu anomalies (δEu?=?0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr?+?Y?+?Nb?+?Ce values (324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb (7.98–24.19) and Y/Nb (1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and (Ho/Yb)N ratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing’an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust. We suggest that the Paleo-Asian Ocean plate between the Xing’an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.  相似文献   

10.
Zircon U–Pb ages and geochemical and isotopic data for Late Ordovician granites in the Baoshan Block reveal the early Palaeozoic tectonic evolution of the margin of East Gondwana. The granites are high-K, calc-alkaline, metaluminous to strongly peraluminous rocks with A/CNK values of 0.93–1.18, are enriched in SiO2, K2O, and Rb, and depleted in Nb, P, Ti, Eu, and heavy rare earth elements, which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed at ca. 445 Ma. High initial 87Sr/86Sr ratios of 0.719761–0.726754, negative ?Nd(t) values of –6.6 to –8.3, and two-stage model ages of 1.52–1.64 Ga suggest a crustal origin, with the magmas derived from the partial melting of ancient metagreywacke at high temperature. A synthesis of data for the early Palaeozoic igneous rocks in the Baoshan Block and adjacent Tengchong Block indicates two stages of flare-up of granitic and mafic magmatism caused by different tectonic settings along the East Gondwana margin. Late Cambrian to Early Ordovician granitic rocks (ca. 490 Ma) were produced when underplated mafic magmas induced crustal melting along the margin of East Gondwana related to the break-off of subducted Proto-Tethyan oceanic slab. In addition, the cession of the mafic magmatism between late Cambrian-Early Ordovician and Late Ordovician could have been caused by the collision of the Baoshan Block and outward micro-continent along the margin of East Gondwana and crust and lithosphere thickening. The Late Ordovician granites in the Baoshan Block were produced in an extensional setting resulting from the delamination of an already thickened crust and lithospheric mantle followed by the injection of synchronous mafic magma.  相似文献   

11.
The Yusufeli area, in the Eastern Black Sea Region of Turkey, contains a crystalline complex that intruded into the Carboniferous metamorphic basement and is composed of two intrusive bodies: a gabbro-diorite and a tonalite-trondhjemite. The mafic body (45–57 wt% SiO2) displays a broad lithological spectrum ranging from plagioclase-cumulate to quartz diorite. Primitive varieties of the body have Mg-number, MgO and Cr contents that are close to those expected for partial melts from mantle peridotite. Data are consistent with the magma generation in an underlying mantle wedge that was depleted in Zr, Nb and Ti, and enriched in large ion lithophile elements (K, Rb, Ba, Th). However, high Al2O3, CaO and generally low Ni (<65 ppm) contents are not in agreement with the unfractionated mantle-derived primitive magmas and require some Al2O3- and CaO-poor mafic phases, in particular, olivine and orthopyroxene. Absence of orthopyroxene in crystallization sequence, uralitization, and a common appearance of clinopyroxene surrounded by hornblende imply an anhydrous phase fractionated from highly hydrous (5–6%) parent. Geochemical modelling suggests derivation by 15–20% melting of a depleted-lherzolitic mantle. The tonalite-trondhjemite body (58–76 wt% SiO2) ranges in composition from quartz diorite to granodiorite with a low-K calc-alkaline trend. Although LILE- and LREE- enriched characteristics of the primitive samples imply a metasomatic sub-arc mantle for their source region, low MgO, Ni and Cr concentrations rule out direct derivation from the mantle wedge. Also, lack of negative Eu anomalies suggests an unfractionated magma and precludes a differentiation from the diorites of mafic body, which show negative Eu anomalies. Their Na enrichments relative to Ca and K are similar to those of Archean tonalites, trondhjemites and granodiorites and Cenozoic adakites. However, they exhibit important geochemical differences from them, including low-Al (<15 wt%) contents, unfractionated HREE patterns and evolution towards the higher Y concentrations and lower Sr/Y ratios within the body. All these features are obtained in experimentally produced melts from mafic rocks at low pressures (≤5 kbar) and also widespread in the rocks of arc where old (Upper Cretaceous or older) oceanic crust is being subducted. Major and REE modelling supports formation of the quartz dioritic parent to the felsic intrusive rocks by 70% partial melting of a primitive gabbroic sample (G694). Therefore, once taking into account the extensional conditions prevailing in the Pontian arc crust in Early Jurassic time, former basic products (gabbros) seem to be the most appropriate source for the tonalite-trondhjemite body. Magmatic emplacement of stratigraphically similar lithologies in the Pulur Massif, just southwest of the Yusufeli, was dated to be 184 Ma by the 40Ar/39Ar method on amphibole, and is compatible with the initiation of Early Jurassic rifting in the region.  相似文献   

12.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

13.
Geochemistry and U-Pb ages of leucosomes and tonalites in a high pressure granulite unit of the Dulan area have been determined to constrain the tectonothermal evolution related to collision and thickening of lower crust in the North Qaidam Mountains (NQD). Leucosomes and tonalites show a marked chemical resemblance to adakites: (1) high La/Yb and Sr/Y, and low Y and HREE; (2) high Al2O3 and low Mg# values with obvious positive Eu anomalies; and (3) slightly positive εNd(t) values. Zircon U-Pb analysis of leucosomes and tonalites yielded 206Pb/238U ages of 428-437 Ma and 436-437 Ma respectively, which constrain the emplacement ages of the adakitic rocks. Petrological, geochronological and geochemical characters indicate that the adakitic rocks may have been derived from partial melting of a thickened mafic lower crust (> 50 km), suggesting a dominating source regime of synchronous high-pressure mafic granulites. Contemporary magmatism in other units of the NQD shows evidence of a widespread tectonothermal event during early Silurian (420-450 Ma) that includes metamorphism, magmatism and anatexis related to collision and thickening of lower crust.  相似文献   

14.
The eastern part of the Voronezh Crystalline Massif hosts coeval S- and A-granitoids. The biotite-muscovite S-granites contain elevated concentrations of Si, Al, and alkalis (with K predominance) and relatively low concentrations of Ca, Mg, Ti, Sr, and Ba, show pronounced negative Eu anomalies, and have low concentrations of Y and HREE. The biotite A-granitoids are enriched in Fe, Ti, P, HFSE, REE and have strongly fractionated REE patterns with deep Eu minima. According to their Rb/Nb and Y/Nb ratios, these rocks are classified with group A2 of postcollisional granites. The SIMS zircon crystallization age of the granitoids lies within the range of 2050–2070 Ma. Both the A- and the S-granitoids have positive ?Nd(T) values, which suggests that they should have had brief crustal prehistories and were derived from juvenile Paleoproterozoic sources. The simultaneous derivation of the A- and S-granites was caused by the melting of the lower crust in response to the emplacement of large volumes of mafic magma in an environment of postcollisional collapse and lithospheric delamination with the simultaneous metamorphism of the host rocks at high temperatures and low pressures. The S-granites are thought to be derived via the melting of acid crustal material in the middle and lower crust. The A2 granites can possibly be differentiation products of mafic magmas that were emplaced into the lower crust and were intensely contaminated with crustal material.  相似文献   

15.
Mesoarchean to Neoarchean orthogneisses (2.95–2.79 Ga) in the Fiskenæsset region, southern West Greenland, are composed of an older suite of metamorphosed tonalites, trondhjemites, and granodiorites (TTGs), and a younger suite of high-K granites. The TTGs are characterized by high Al2O3 (14.2–18.6 wt.%), Na2O (3.4–5.13 wt.%), and Sr (205–777 ppm), and low Y (0.7–17.4 ppm) contents. On chondrite- and N-MORB-normalized trace element diagrams, the TTGs have the following geochemical characteristics: (1) highly fractionated REE patterns (La/Ybcn = 14–664; La/Smcn = 4.3–11.0; Gd/Ybcn = 1.5–19.7); (2) strong positive anomalies of Sr (Sr/Sr* = 1.0–15.9) and Pb (Pb/Pb* = 1.4–34.9); and (3) large negative anomalies of Nb (Nb/Nb* = 0.01–0.34) and Ti (Ti/Ti* = 0.1–0.6). The geochemical characteristics of the TTGs and trace element modeling suggest that they were generated by partial melting of hydrous basalts (amphibolites) at the base of a thickened magmatic arc, leaving a rutile-bearing eclogite residue. Field observations suggest that spatially and temporarily associated tholeiitic basalts (now amphibolites) in the Fiskenæsset region might have been the sources of TTG melts. The high-K granites have steep REE patterns (La/Ybcn = 3.8–506; La/Smcn = 2.7–18.9; Gd/Ybcn = 0.92–12.1) and display variably negative Eu anomalies (Eu/Eu* = 0.37–0.96) and moderate Sr (84–539 ppm) contents. Four outlier granite samples have variably positive Eu (Eu/Eu* = 1.0–12) anomalies. Given that the granodiorites have higher K2O/Na2O than the tonalites and trondhjemites, it is suggested that the granites were derived from partial melting of the granodiorites. It is speculated that the dense eclogitic residues, left after TTG melt extraction, were foundered into the sub-arc mantle, leading to basaltic underplating beneath the lower rust. Melting of the granodiorites in response to the basaltic underplating resulted in the production of high-K granitic melts. Formation of the Fiskenæsset TTGs, the foundering of the eclogitic residues into the mantle, and the emplacement of the high-K granites led to the growth of Archean continental crust in the Fiskenæsset region.  相似文献   

16.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

17.
The results of a chemical study of a suite of low-pressure granulite facies rocks in Namaqualand, South Africa, are reported. The area is underlain by augen gneisses and quartzites, which contain interlayered granular quartz-feldspar rocks (termed ‘granulites’) derived by extensive partial melting of the gneiss. The K/Rb ratio of the gneiss increases from 140 to 250 over a melting interval of 70%: the rate of increase being influenced by the presence of biotite. Simultaneously K/Ba and Rb/Sr decrease from 80 to 25 and from 4 to 0.3, respectively. The partial melts (granulites), which reflect, in part, a cumulate character, have similar K/Rb ratios to the parent gneiss (175) but larger K/Ba (238) and Rb/Sr (5) ratios, due to the retention of Ba and Sr in the residue.Three granites intrude the gneisses. One of these was produced by very advanced partial melting of the gneiss. Continuity of chemical composition suggests that the remaining two granites, although spatially separate, are comagmatic, and evolved by feldspar fractionation during ascent. Lower Sr87/Sr86 ratio coupled with enrichment of Ba, Sr and Rb in the parent magma of these granites relative to the country rocks precludes local derivation and indicates a lower crustal source rock of intermediate composition.The progressive increase in cafemic character of the gneisses, which is similar to that observed in world granulite terrains as a whole, coupled with intrusive granite which reflects reworking of the lower crust in the area studied, supports a partial melting model for the development of a lower crust of progressively more cafemic composition.  相似文献   

18.
The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica±cordierite±Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293–289 Ma). SiO2 content in the granitic rocks ranges from 57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite±amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica±Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite±hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to 300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40–4.5), Th/Sm (0.1–3.6), Th/Ta (0–70), Ba/Nb (1–150), and Ba/Ta (50–2100), as well as low values of Nb/U (2–28) and La/Th (1–10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock 18O ranges from +8.2 to +11.7; the mafic cumulate enclaves have the lowest 18O values and the two-mica granites have the highest values. 18O values for biotite±honblende tonalitic and granodioritic rocks (9.1 to 10.8) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb 18.17–18.45, 207Pb/204Pb 15.58–15.77, 208Pb/204Pb 38.20–38.76) also indicates the predominance of a crustal source. Although the granitic groups cannot be uniquely distinguished on the basis of their Pb isotope compositions most of the post-tectonic tonalites to granodiorites as well as two-mica granites are somewhat less radiogenic than the syn-tetonic tonalites and granodiorites. Only a few of the mafic enclaves overlap the Pb isotope field of the granitic rocks and are consistent with a cogenetic origin. The Sila batholith was generated by mixing of material derived from at least two sources, mantle-derived and crustal, during the closing stages of plate collision and post-collision. The batholith ultimately owes its origin to the evolution of earlier, more mafic parental magmas, and to complex intractions of the fractionating mafic magmas with the crust. Hybrid rocks produced by mixing evolved primarily by crystal fractionation although a simple fractionation model cannot link all the granitic rocks, or explain the entire spectrum of compositions within each group of granites. Petrographic and geochemical features characterizing the Sila batholith have direct counterparts in all other granitic massifs in the Calabrian-Peloritan Arc. This implies that magmatic events in the Calabrian-Peloritan Arc produced a similar spectrum of granitic compositions and resulted in a distinctive type of granite magmatism consisting of coeval, mixed, strongly peraluminous and metaluminous granitic magmas.  相似文献   

19.
珲春小西南岔地区白垩纪花岗岩主要有英云闪长岩和花岗闪长岩两种类型。英云闪长岩属于中钾钙碱性系列(Na2O/K2O=1.99~2.76),具有高Al2O3(15.46%~17.13%)、Sr(559×10-6~731×10-6)、Sr/Y(40~78)、La/Yb(16~21),低Y(9×10-6~14×10-6)、Yb(0.8×10-6~1.3×10-6)的特征,与埃达克质岩石地球化学特征类似。花岗闪长岩为高钾钙碱性系列,Na2O/K2O=1.01~1.56,w(Sr)=312×10-6~410×10-6w(Yb)=1.23×10-6~2.13×10-6、Sr/Y=13~32,属正常的高钾钙碱性花岗岩。两类花岗岩的源区均为玄武质下地壳物质,英云闪长质岩浆形成压力较高(> 1.0 GPa),深度大于33 km,花岗闪长质岩浆形成压力相对较低(0.8~1.0 GPa),岩浆来源深度为26~33 km。  相似文献   

20.
甘肃阿克塞县安南坝地区镁铁质麻粒岩呈脉状、透镜状赋存于新太古代米兰岩群和TTG片麻岩中。岩石主要由斜长石(Pl)+斜方辉石(Opx)+单斜辉石(Cpx)+角闪石(Amp)+磁铁矿(Mt)等组成。安南坝镁铁质麻粒岩中Ti、P、Nb、Ta、Th、Hf、Sr及REE等元素与Zr相关性较好,表明其在变质作用过程中保持基本稳定。地球化学数据显示其原岩属于拉斑玄武质岩系列,Si O_2、Ti O_2、Al_2O_3、P_2O_5含量相对较低,Ca O、Mg O含量相对较高。Mg~#值为41.52~43.09,低于原生玄武质岩石的Mg~#值,Fe_2O_3~T、Mg O、Ca O与Si O_2含量呈负相关性,指示原岩岩浆演化过程中可能发生了辉石、角闪石等镁铁质矿物的分异结晶作用。镁铁质麻粒岩∑REE较低,稀土元素配分模式为轻稀土元素弱富集、重稀土元素相对平坦的右倾型,Eu异常不明显(Eu/Eu~*=0.91~1.01)。岩石富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Ti等高场强元素,具有显生宙典型岛弧玄武质岩石的地球化学特征。Sr、Nd、Pb同位素组成显示镁铁质麻粒岩原岩源自富集地幔,并受到一定程度的地壳物质混染。构造环境分析表明安南坝镁铁质麻粒岩原岩形成于与俯冲有关的岛弧环境。在俯冲作用机制下,俯冲板片流体交代使地幔楔发生富集,形成富集地幔,随着(弧后)伸展作用的加强,进一步诱发富集地幔的部分熔融形成镁铁质岩浆,最终岩浆就位形成辉长岩或辉绿岩脉,后期在麻粒岩相变质作用条件下变质为镁铁质麻粒岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号