首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   

2.
A large landslide on the urban fringe of metropolitan Phoenix, Arizona   总被引:2,自引:1,他引:2  
A granitic rock avalanche, one of the largest Quaternary landslides in Arizona outside the Grand Canyon with a volume of approximately 5.25 M m3 and a width a little under 0.5 km, ran 1 km from the eastern McDowell Mountains. With lateral levees and pressure ridges, the rock avalanche deposit displays many features found on classic sturzstroms. Failure occurred along a major joint plane paralleling the slope with a dip of 44°, when a major base level lowering event in the Salt River system would have undermined the base of the failed slope, and probably during a period of more moisture than normally available in the present-day arid climate. Failure at the subsurface weathering front highlights the importance of the dramatic permeability change between grussified regolith and relatively fresh bedrock. Rock varnish microlaminations (VMLs) dating, in concert with other geomorphic evidence, suggests that the rock avalanche deposit is slightly older than 500 ka. The rock vanish results also have important implications for sampling strategies designed to use cosmogenic nuclide to date Quaternary landslide deposits. Discovery of a large landslide in close proximity to the extending urban fringe of metropolitan Phoenix argues for a more careful analysis of landslide hazards in the region, especially where rapid development excavates bedrock at the base of steep mountain slopes and where the subsurface weathering front is near the surface.  相似文献   

3.
Using data from the Scottish Highlands and northwest Iceland, the present study indicates that bedrock strength properties are an important control on the morphology of glacial valleys. Results indicate that on closely jointed metasedimentary bedrock of low rock mass strength, broad U‐shaped valleys are developed, whilst steeper sided, narrower cross‐profiles have been developed on igneous bedrock of high rock mass strength. Findings suggest it is the interplay of the mass strength of the subglacial bedrock and the dynamic properties of the eroding glacier that control valley morphological development. The implication is that realistic models of topographic development beneath ice sheets need to consider the rock mass strength properties of the eroded bedrock as well as the glaciological variables.  相似文献   

4.
ABSTRACT. The range boundaries for many tree species in the southeastern United States correspond to the Fall Line that separates the Coastal Plain from the Appalachian Highlands. Trees in the Coastal Plain with northern range boundaries corresponding to the Fall Line occur exclusively in alluvial valleys created by lateral channel migration. These species grow mostly on lower bottomland sites characterized by a high water table, soils that are often saturated, and low annual water fluctuation. In contrast to the Coastal Plain, the southern Appalachian Highlands are occupied mostly by bedrock streams that have few sites suitable for the regeneration of these species. The Fall Line is also an approximate southern boundary for trees common in the southern Appalachians that typically occur on either dry, rocky ridgetops or in narrow stream valleys, habitats that are uncommon on the relatively flat Coastal Plain. The ranges for many trees in eastern North America are controlled by large‐scale climatic patterns. Tree species with range boundaries corresponding to the Fall Line, however, are not approaching their physiological limits caused by progressively harsher climatic conditions or by competition. Instead, the Fall Line represents the approximate boundary of habitats suitable for regeneration.  相似文献   

5.
1951-2010 年中国主要气候区划界线的移动   总被引:10,自引:2,他引:8  
根据采用同一区划方法、指标体系划分的1951-1980 年及1981-2010 年中国气候区划结果,对比分析了过去60 年中国气候区划的主要界线变化特征。结果表明:1951-1980 年至1981-2010 年,我国寒温带界线西缩、北移;暖温带北界东段北移,其中最大北移幅度超过1个纬度;北亚热带北界东段平均北移1 个纬度以上,并越过淮河一线;中亚热带北界中段从江汉平原南沿移至了江汉平原北部,最大移动幅度达2 个纬度;南亚热带北界西段北移0.5~2 个纬度;青藏高原亚寒带范围缩小,高原温带范围增加。东北湿润、半湿润区虽转干与趋湿并存,但其中温带地区的湿润-半湿润东界东移,大兴安岭中部与南部的半湿润-半干旱界线北扩;其他地区的干湿分界线虽未出现明显移动,但北方半干旱及华北半湿润区总体转干,河西走廊、新疆及青藏高原的干旱、半干旱区总体转湿;而南方湿润区则趋干与转湿并存。  相似文献   

6.
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.  相似文献   

7.
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951–1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20–400 km in Northeast China, 40–400 km in North China, 30–350 km in the eastern part of Northwest China and 40–370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.  相似文献   

8.
In southern Michigan, a multiglaciated area of thick drift, regional differences in the altitude of the buried bedrock surface control the direction of major drainage lines and facilitated some stream reversals during deglaciation. Furthermore, individual bedrock valleys, though deeply buried, may influence surface forms in a fashion that induces transverse relationships between river courses and morainal trends. Apparently one or more ancestral glacial landscapes were influenced by the bedrock surface and are also reflected in the present topography. Such palimpsest landscapes may be more widespread in glaciated terrains than have generally been recognized.  相似文献   

9.
东北地区植被分布全球气候变化区域响应   总被引:26,自引:8,他引:18  
根据东北地区生态气候环境和生物地理规律对Holdridge生命地带分类系统进行修正,将东北地区植被分为寒温带湿润森林、寒温带潮湿森林、温带湿润森林、暖温带湿润森林、温带半湿润森林草甸草原、温带半湿润草甸草原、温带半干旱典型草原、暖温带半湿润草甸草原和暖温带半干旱典型草原等9 个生命地带并分析了其空间分布特征。运用大气环流模式分析东北地区由于温室气体增加导致的气候变化趋势。以此为基础评价东北地区植被分布的区域响应。全球气候变暖情景下,东北地区暖温带和温带范围明显扩大,而寒温带范围缩小甚至退出东北地区,植被分布界限显著北移;同时湿润区面积减少半湿润区和半干旱区扩大,导致森林面积缩小草原面积扩大。  相似文献   

10.
The long-term studies of water and chemical budgets in the Hubbard Brook watershed, White Mountains, New Hampshire, have assumed that the underlying bedrock is watertight and that all of the liquid water discharged from the experimental subcatchment areas was measured using stream gauging instrumentation. This paper reviews the evidence used by past workers to support this assumption. In a reanalysis of the reported relationship between precipitation inputs and stream outputs of chloride, the mean annual groundwater discharge beneath the stream gauging stations was computed to be at least 5–10% of the mean annual precipitation. Groundwater discharge of this quantity would change both the evapotranspiration and the rock-weathering rates reported for the Hubbard Brook watershed. On-site hydrogeological field tests are recommended in all watersheds that are assumed to be underlain by watertight bedrock. [Key words: forested ecosystems, groundwater hydrology, bedrock fractures, water budgets, evapotranspiration, chemical budgets, rock weathering.]  相似文献   

11.
In the Zugspitze area (Bavarian Alps, Germany), permafrost conditions are present in limestone bedrock and in regolith. Distribution is strongly dependent on topography in the east–west oriented mountain crest with steep north- and south-facing slopes. Numerous structures mainly for tourist purposes (cable car and recreation buildings, ski-lift masts, rack-railway tunnel, tunnel with supply facilities) are situated in the area, and several of them are placed on ground with permafrost. Results from a temperature measurement programme and distribution modelling show that for some of these constructions, the effects of permafrost degradation have to be considered in terms of stability of the foundations.The permafrost limit is close to the summit crest, and therefore, stability evaluations for the constructions in this area have to bear in mind the possible warming or even melting of ice within the bedrock crevasses caused by climate warming. Stability of the foundations as well as stability of rock walls in this area will probably be affected by a shifting of the permafrost limit. Constructions in the Zugspitzplatt area are already affected by the melting ground ice, and stabilizing measures have to be evaluated for several foundations where subsidence is likely to occur.Besides the local results, the study provides for the first time data on permafrost distribution in the northern Alpine margin based on standard methods of BTS measurements and numerical modelling.  相似文献   

12.
Forest vegetation in the southeastern United States extends westward beyond the Ozark and Ouachita plateaus in Arkansas and Missouri into the Central Plains. Along this transect, luxuriant forests give way to mixed forests and grasslands that include smaller trees and progressively fewer tree species and eventually to grassland‐dominated landscapes in central Kansas, Oklahoma, and Texas. This transition is directly related to decreasing precipitation with distance to the west of the Mississippi River valley. Many species, however, have abrupt western range boundaries related to physiography and hydrogeomorphic processes. The western range limits for many trees correspond to Coastal Plain boundaries that at a regional scale impose sharper range boundaries than would be expected on the basis of decreasing precipitation. Also, riparian habitats within stream valleys extending westward from the Coastal Plain provide suitable habitats for trees in the dry regions of the Great Plains. The presence of riparian trees in this region is determined largely by the presence or absence of groundwater conditions necessary for survival. For floodplain trees, then, it is primarily habitat—not climate—that determines the location of range boundaries.  相似文献   

13.
以辽南地区石槽剖面红色风化壳为研究对象,通过研究剖面的常量元素和地球化学指标,揭示剖面的地球化学特征,探讨剖面化学风化过程以及对古气候环境演变过程的响应。结果表明:石槽剖面红色风化壳中Ca元素重度亏损,其他常量元素均出现了相对富集;石槽剖面风化强度总体上低于南方红色风化壳,属于中等风化阶段;多个地球化学指标的垂向变化表明石槽剖面风化强度表现为风化很强-风化减弱-风化加强-风化较弱4个阶段的变化,指示辽南地区在石槽剖面发育期内古气候环境经历了湿热-暖湿-回暖-相对暖湿的演变过程。  相似文献   

14.
Snow cover influences the thermal regime and stability of frozen rock walls. In this study, we investigate and model the impact of the spatially variable snow cover on the thermal regime of steep permafrost rock walls. This is necessary for a more detailed understanding of the thermal and mechanical processes causing changes in rock temperature and in the ice and water contents of frozen rock, which possibly lead to rock wall instability. To assess the temporal and spatial evolution and influence of the snow, detailed measurements have been carried out at two selected points in steep north‐ and southfacing rock walls since 2012. In parallel, the one‐dimensional energy balance model SNOWPACK is used to simulate the effects of snow cover on the thermal regime of the rock walls. For this, a multi‐method approach with high temporal resolution is applied, combining meteorological, borehole rock temperature and terrain parameter measurements. To validate the results obtained for the ground thermal regime and the seasonally varying snowpack, the model output is compared with near‐surface rock temperature measurements and remote snow cover observations. No decrease of snow depth at slope angles up to 70° was observed in rough terrain due to micro‐topographic structures. Strong contrasts in rock temperatures between north‐ and south‐facing slopes are due to differences in solar radiation, slope angle and the timing and depth of the snow cover. SNOWPACK proved to be useful for modelling snow cover–rock interactions in smooth, homogenous rock slopes.  相似文献   

15.
Trimmed lichen communities (lichen limits) are abrupt changes from a lichen community to a scoured bare rock surface and have been used to determine bankfull channel capacity on bedrock channels and their response to the combined disturbances of flow regulation and climate change. They can also be used to set flushing flows in bedrock channels. In sandstone gorges of the Nepean River, Australia, the crustose lichen, Lecidea terrena Nyl, was common at both gorge and cemetery (sandstone headstones) sites, enabling construction of growth curves for above and below dam areas. Growth curves were used to date lichen colonisation of sandstone surfaces in rivers. The oldest, highest lichen limit at all sites represented the pre‐flow regulation lichen community because its characteristics above and below Nepean Dam were similar and were trimmed to a level that produced consistent discharges across a range of catchment areas. They corresponded to return periods of less than 2 years on the annual maximum series and was developed during the flood‐dominated regime (FDR) of 1857–1900. Lichen limits form by the phycobiont dominating the mycobiont and hence degrading lichen thalli due to water inundation causing weak or dead thalli to be scrubbed from the rock surface. Trimming to the unregulated lichen limit represents a small flood of frequent occurrence appropriate for flushing bedrock channels. A lower lichen limit was only found below a diversion weir and was formed by frequent dam spills between 1950 and 1952 during an extraordinary wet period at the start of the FDR between 1949 and 1990. Lichens colonised exposed sandstone between the level of frequent flows from 1949 to 1952, and the high lichen limit. On the Avon River, an additional lower limit reflected a massive downward shift in flow duration following the start of interbasin diversions to Wollongong in 1962.  相似文献   

16.
ABSTRACT The Dehradun Valley, a synclinal intermontane valley piggyback basin within the Siwalik Group rocks in the NW Himalaya, is separated from the Lesser Himalayan formations in the north by a major intraplate thrust, the Main Boundary Thrust (MBT) and from the Indogangetic Plains in the south by the Himalayan Frontal Fault (HFF). Major parts of the Dehradun Valley are covered by three fans, from west to east the Donga, Dehradun and Bhogpur fans, deposited by streams following the topography produced by activity of the MBT and probable footwall imbricate thrusts, starting at about 50 ka. The Donga and Dehradun fans were fed by small streams and characterized mainly by sediment gravity‐flow deposits (debris flow and mudflow deposits) in the proximal zone, and mostly mudflow deposits and minor braided stream deposits in the middle zone during the period 50–10 ka. Palaeosols were weakly developed in the proximal zone and moderately to strongly developed in the middle zone. The degree of development of palaeosol was mainly a function of rate of sedimentation and to some extent entrenchment of streams into the fan surface. Since 10 ka, deposition has been typically by braided streams. The Bhogpur fan has been marked by deposition from relatively larger braided streams since 50 ka. The fan sequences in the Dehradun Valley are synorogenic and their deposition started due to activity of the southern footwall imbricate of the MBT, i.e. Bhauwala Thrust on the Donga and Dehradun fans. In these fans, major fan sequences show retrogradation (50–10 ka) related to a decrease in the activity of the MBT and related imbricates and activity of more hinterlandward imbricates with time. After 10 ka a thin prograding sequence was deposited due to uplift of the fans, which resulted from the activity on a thrust in the distal parts of the fans. It suggests an out‐of‐sequence activity of faults in the MBT imbricate system. Cross‐faults divide the Siwalik formations in the footwall of the MBT into three blocks, which were marked by decreasing subsidence or possibly uplift from east to west. Thrusting on the HFF was not piggyback type but synchronous with activity of the MBT and its imbricates. The development of the Mohand fault‐bend anticline above the HFF changed the nature of the basin from foreland to piggyback type, shed minor colluvial deposits prior to 10 ka, and folded the southernmost fan deposits in the western, narrow parts of the valley. A major change in climate from a cold, dry climate with strong seasonal variations prevailing since 50 ka to warm and humid climate at about 10 ka resulted in a change in depositional processes from sediment gravity‐flows to braided streams.  相似文献   

17.
Twenty‐six sites with remnants of gravelly saprolites (grus) have been located in southeast Sweden. Joint block hills (castle kopjes) and steep rock walls with weathered joints as well as rounded boulders are documented to have an origin in deep weathering and subsequent stripping of saprolites. The saprolite remnants and landforms result from the fragmentation of the re‐exposed sub‐Cambrian peneplain along fracture systems. Only shallow saprolites occur on the elevated intact parts of the sub‐Cambrian peneplain, while saprolites up to 20 m thick are encountered in areas where the sub‐Cambrian peneplain is fractured and dissected. Neogene uplift with reactivation of the weathering system is thought to be the main cause of saprolite formation. Deep weathering is thus judged to have been the major agent of landform formation in the study area, while glacial and glaciofluvial erosion has contributed mainly by stripping saprolites, detaching corestones, and plucking joint blocks along weathered joints.  相似文献   

18.
王贵勇  董光荣 《中国沙漠》1995,15(2):124-130
戈壁是荒漠景观的基本类型之一。从沉积相和沉积环境的角度出发,将戈壁定义为干旱大气与砾石堆积体和裸露基岩表面相互作用的界面,由这个面覆盖的区域称作戈壁。在干旱大气环境下,砾石堆积体或基岩表面经历了机械风化作用、盐分风化和盐分微地貌作用、风力作用及荒漠漆发育等外力作用,使其与其它地区的砾石堆积体或基岩表面出现本质的不同。戈壁面特有的地质、地貌特征指示了干旱气候的存在,其中记录的有效信息可为研究干旱区气候、环境变化及新构造运动提供新的途径。  相似文献   

19.
Ages and elevations of ash layers correlated with late Tertiary and Pleistocene eruptions in the western US and present stream elevations are used to calculate net rates of incision by streams in the middle reaches of the Arkansas River basin in the south central US. The mean of the 23 measurements of rate of stream incision in the study area is 4.2±2.7 cm/ky with a range of 0.6 to 9.7 cm/ky. Major influences on rate of stream incision in the study area include the arid to semi-arid climate of the region, the type of material being incised by streams, stream captures, and salt dissolution in the bedrock that underlies the region. Rates of incision exceeded rates of basin filling but significant deposits of unconsolidated late Cenozoic sediments occur in the study area. Basins of streams that have incised the slowest since the late Tertiary contain the thickest and most extensive amounts of unconsolidated Quaternary sediments. Rates of incision by streams in the study area are similar to or slower than rates reported for streams elsewhere in the US and the world. Streams in mountainous regions and areas affected by rapid uplift have incised at rates orders of magnitude faster than streams in the study area.  相似文献   

20.
Analysis of valley morphometry and bedrock strength along Big Creek, central Idaho, shows that valley floor width is strongly controlled by bedrock. We performed statistical analysis of Schmidt hammer rock strength as a function of lithology and aspect and of valley morphometry as a function of rock strength. Rock strength is significantly greater on the south side of the valley and in Eocene granodiorites. Rock strength is weakest in Eocene volcanic tuffs. Valley floor width depends negatively on weakest valley-side rock strength, and hillslope gradient on the north side of the valley depends positively on rock strength. Stream gradient does not depend on rock strength. Valley floor width appears to be controlled by bedrock strength on the weaker side of the valley, which was generally the north (south-facing) side. We speculate that a higher degree of weathering via freeze–thaw cycles contributes to lower strength on the north side. The positive dependence of hillslope gradient on rock strength on the north side provides evidence that differential weathering across lithologies determines the gradient that can be maintained as lateral migration of the stream erodes valley walls. These results suggest that in situ rock strength exerts strong influences on some measures of valley morphometry by modulating hillslope mass wasting processes and limiting lateral erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号