首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process-based interpretation of tracer tests in carbonate aquifers   总被引:6,自引:0,他引:6  
Birk S  Geyer T  Liedl R  Sauter M 《Ground water》2005,43(3):381-388
A tracer test in a carbonate aquifer is analyzed using the method of moments and two analytical advection-dispersion models (ADMs) as well as a numerical model. The numerical model is a coupled continuum-pipe flow and transport model that accounts for two different flow components in karstified carbonate aquifers, i.e., rapid and often turbulent conduit flow and Darcian flow in the fissured porous rock. All techniques employed provide reasonable fits to the tracer breakthrough curve (TBC) measured at a spring. The resulting parameter estimates are compared to investigate how each conceptual model of flow and transport processes that forms the basis of the analyses affects the interpretation of the tracer test. Numerical modeling results suggest that the method of moments and the analytical ADMs tend to overestimate the conduit volume because part of the water discharged at the spring is wrongly attributed to the conduit system if flow in the fissured porous rock is ignored. In addition, numerical modeling suggests that mixing of the two flow components accounts for part of the dispersion apparent in the measured TBC, while the remaining part can be attributed to Taylor dispersion. These processes, however, cannot reasonably explain the tail of the TBC. Instead, retention in immobile-fluid regions as included in a nonequilibrium ADM provides a possible explanation.  相似文献   

2.
A structure model was used to analyse solute‐transport parameter estimates based on tracer breakthrough curves. In the model system, groundwater flow is envisioned to be organised in a complex conduit network providing a variety of short circuits with relative small carrying capacities along different erosion levels. The discharge through the fully filled conduits is limited owing to void geometries and turbulent flow; thus, a hierarchic overflow system evolves where conduits are (re‐)activated or dried up depending on the flow condition. Exemplified on the Lurbach–Tanneben karst aquifer, the applicability of the model approach was tested. Information derived from multi‐tracer experiments performed at different volumetric flow rates enabled to develop a structural model of the karst network, under constraint of the geomorphological and hydrological evolution of the site. Depending on the flow rate, groundwater is divided into up to eight flow paths. The spatial hierarchy of flow paths controls the sequence of flow path activation. Conduits of the topmost level are strongly influenced by reversible alteration processes. Sedimentation or blocking causes an overflow of water to the next higher conduit. Flow path specific dissolutional denudation rates were estimated using the temporal development of the partial discharge. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

4.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

5.
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.  相似文献   

6.
This paper presents a vertically averaged model for studying water and solute exchanges between a large river and its adjacent alluvial aquifer. The hydraulic model couples horizontal 2D Saint Venant equations for river flow and a 2D Dupuit equation for aquifer flow. The dynamic coupling between river and aquifer is provided by continuity of fluxes and water level elevation between the two domains. Equations are solved simultaneously by linking the two hydrological system matrices in a single global matrix in order to ensure the continuity conditions between river and aquifer and to accurately model two‐way coupling between these two domains. The model is applied to a large reach (about 36 km2) of the Garonne River (south‐western France) and its floodplain, including an instrumented site in a meander. Simulated hydraulic heads are compared with experimental measurements on the Garonne River and aquifer in the floodplain. Model verification includes comparisons for one point sampling date (27 piezometers, 30 March 2000) and for hydraulic heads variations measured continuously over 5 months (5 piezometers, 1 January to 1 June 2000). The model accurately reproduces the strong hydraulic connections between the Garonne River and its aquifer, which are confirmed by the simultaneous variation of the water level in the river and in piezometers located near the river bank. The simulations also confirmed that the model is able to reproduce groundwater flow dynamics during flood events. Given these results, the hydraulic model was coupled with a solute‐transport component, based on advection‐dispersion equations, to investigate the theoretical dynamics of a conservative tracer over 5 years throughout the 36 km2 reach studied. Meanders were shown to favour exchanges between river and aquifer, and although the tracer was diluted in the river, the contamination moved downstream from the injection plots and affected both river banks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A groundwater flow model has been developed in order to study the chalk aquifer of Paris Basin, based on most of the geological and hydrological available data. The numerical processes are intended to modelling the groundwater flow in the Senonian (Late Cretaceous) formations and to visualize the tracer movement in groundwater resources in the experimental site of LaSalle Beauvais (northern part Paris Basin). Both objectives were achieved as follows: (i) the comprehension of the spatial distribution of the hydraulic conductivity in the chalk aquifer taking into account the characteristics of the hydrogeological system and (ii) the use of the analytical solution for describing one‐dimensional to two‐dimensional solute transport in a unidirectional steady‐state flow tracer with scale‐dependent dispersion. Advection and diffusion mechanisms are taken into account. Comparison between the breakthrough curves of the analytical and the numerical solutions provided an excellent agreement for various ranges of scale‐related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at each observation point. Thus, the derived new solutions are widely applicable and are very useful for the validation of numerical transport. The numerical approach is carried out by MT3DMS, a Modular 3‐D Multi‐Species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, and based on total variation‐diminishing method using the ULTIMATE algorithm. The estimation of the infected surface could constitute an approach in water management and allows to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head‐dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over‐ or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive‐use management tools.  相似文献   

10.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

11.
To determine the fate and movement of sewage derived contaminants and their possible interaction with surface waters in the Florida (USA) Keys, two types of experiments were conducted using SF6 as an artificial tracer. The first type of experiment examined fluid flow from septic tanks placed in Miami Oolite on Big Pine Key, where there is a shallow freshwater lens overlying saline groundwaters. Here groundwater transport rates were constrained to be between 0.11 and 1.87 m/h, travelling in an easterly direction. The second type of experiment took place on Key Largo where there is no freshwater aquifer and the matrix of the aquifer is solely the more porous Key Largo limestone. Here we injected the tracer into a shallow well which was screened from 0.6 to 10 m. This allowed us to evaluate groundwater movement in the shallow upper portion of the aquifer, the area to which inputs by septic tanks occur. Groundwater transport rates in the Upper Keys were as great as 3.7 m/h and were controlled by the Atlantic tide. SF6 laden groundwater plumes moved back and forth due to tidal pumping and reached nearby surface waters within 8 h.  相似文献   

12.
Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.  相似文献   

13.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

14.
Karst spring responses examined by process-based modeling   总被引:8,自引:0,他引:8  
Birk S  Liedl R  Sauter M 《Ground water》2006,44(6):832-836
Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.  相似文献   

15.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Zheng C  Gorelick SM 《Ground water》2003,41(2):142-155
Several recent studies at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, have indicated that the relative preferential flowpaths and flow barriers resulting from decimeter-scale aquifer heterogeneities appear to have a dominant effect on plume-scale solute transport. Numerical experiments are thus conducted in this study to explore the key characteristics of solute transport in two-dimensional flow fields influenced by decimeter-scale preferential flowpaths. A hypothetical but geologically plausible network of 10 cm wide channels of high hydraulic conductivity is used to represent the relative preferential flowpaths embedded in an otherwise homogeneous aquifer. When the hydraulic conductivity in the channels is 100 times greater than that in the remaining portion of the aquifer, the calculated concentration distributions under three source configurations all exhibit highly asymmetrical, non-Gaussian patterns. These patterns, with peak concentrations close to the source and extensive spreading downgradient, resemble that observed at the MADE site tracer tests. When the contrast between the channel and nonchannel hydraulic conductivities is reduced to 30:1 from 100:1, the calculated mass distribution curve starts to approach a Gaussian one with the peak concentration near the central portion of the plume. Additional analysis based on a field-scale model demonstrates that the existence of decimeter-scale preferential flowpaths can have potentially far-reaching implications for ground water remediation. Failure to account for them in numerical simulation could lead to overestimation of the effectiveness of the remedial measure under consideration.  相似文献   

17.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

18.
The knowledge of hydraulic properties of aquifers is important in many engineering applications. Careful design of ground‐coupled heat exchangers requires that the hydraulic characteristics and thermal properties of the aquifer must be well understood. Knowledge of groundwater flow rate and aquifer thermal properties is the basis for proper design of such plants. Different methods have been developed in order to estimate hydraulic conductivity by evaluating the transport of various tracers (chemical, heat etc.); thermal response testing (TRT) is a specific type of heat tracer that allows including the hydraulic properties in an effective thermal conductivity value. Starting from these considerations, an expeditious, graphical method was proposed to estimate the hydraulic conductivity of the aquifer, using TRT data and plausible assumption. Suggested method, which is not yet verified or proven to be reliable, should be encouraging further studies and development in this direction.  相似文献   

19.
Models for contaminant transport in streams commonly idealize transient storage as a well mixed but immobile system. These transient storage models capture rapid (near‐stream) hyporheic storage and transport, but do not account for large‐scale, stage‐dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large‐scale, stage‐dependent preferential flow pathways (PFPs). Long‐term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P‐laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re‐entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams' total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 µm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage‐dependent transient storage in alluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Analytical solutions for the water table and lateral discharge in a heterogeneous unconfined aquifer with time-dependent source and fluctuating river stage were derived and compared with those in an equivalent homogeneous aquifer. The heterogeneous aquifer considered consists of a number of sections of different hydraulic conductivity values. The source term and river stage were assumed to be time-dependent but spatially uniform. The solutions derived is useful in studying various groundwater flow problems in a horizontally heterogeneous aquifer since the spatially piecewise-constant hydraulic conductivity and temporally piecewise-constant recharge and lateral discharge can be used to quantify variations in these processes commonly observed in reality. Applying the solutions derived to an aquifer of three sections of different hydraulic conductivity values shown that (1) the aquifer heterogeneity significantly increases the spatial variation of the water table and thus its gradient but it has little effect on lateral discharge in the case of temporally and spatially uniform recharge, (2) the time-dependent but spatially uniform recharge increases the temporal variation of groundwater table over the entire aquifer but its effect on lateral discharge is limited in the zone near the river, and (3) the effect of river stage fluctuation on the water table and lateral discharge is limited in the zone near the river and the effect of the heterogeneity is to increase lateral discharge to or recharge from the river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号