首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thirteen ostracod species including two new species, Clavofabellina fukujiensis n. sp. and Bythocypris wangi n. sp., are reported from the Middle Shale Member of the Fukuji Formation, Devonian of central Japan. The ostracods demonstrate species‐links with South China, indicating that the Hida‐Gaien Terrane of central Japan shared biogeographical affinities with the shallow marine faunas of the South China paleocontinent during the Early Devonian.  相似文献   

2.
Mesozoic, Cenozoic and especially Holocene ostracod faunas have been documented from Japan. Not surprisingly, considering the plate tectonic factors at play, very few ostracod faunas are known from its early Paleozoic successions. Our pilot studies have recovered new ostracod assemblages from early Paleozoic terranes of Japan. Acid preparation of carbonates has yielded low diversity, poorly preserved yet significant palaeocopid and podocopid ostracod faunas from Wenlock/Ludlow Series Silurian rocks at Gionyama in the Kurosegawa Terrane, Miyazaki Prefecture, Kyushu, and Hitoegane in the Hida‐Gaien Terrane, Gifu Prefecture, Honshu. The ostracod faunas include new eurychilinoid (Pauproles supparata gen. et sp. nov.), hollinoid (Hollinella orienta sp. nov.) and beyrichioid (Clintiella antifrigga sp. nov.) palaeocopid taxa. Conodonts recovered from the same sample as the ostracods from Gionyama confirm a mid‐Silurian age for the part of the Gionyama Formation in question. The ostracod faunas recovered from Gionyama and Hitoegane are the first confirmed, well‐documented record of the group from the Silurian of Japan and are therefore the earliest known ostracods from that country (a previous record of purported Ordovician ostracods from Japan is incorrect). The ostracod taxa display links with the paleocontinents of particularly Laurentia and Baltica and demonstrate a pan‐tropical signature; it appears that climate control was stronger than geographical control in shaping this pattern of ostracod distribution. The material recovered includes adult dimorphic (assumed sexual) pairs of three palaeocopid species, which represent Japan's oldest (423–433 million years) known ‘couples’.  相似文献   

3.
Six major groups of trilobites from the Silurian and Devonian of Japan are evaluated for their paleobiogeographical signature. Silurian illaenids and scutelluids show four generic‐level and at least two species‐level links with the Australian segment of the Gondwana paleocontinent; encrinurids also indicate two generic‐level links with Australia and also the South China paleocontinent; whilst Devonian phacopids, and possibly proetids, suggest at least two generic‐level links with the North China paleocontinent. These different patterns may reflect the fragmentary biostratigraphical record of Japanese trilobites, but they also appear to reflect paleoenvironmental parameters associated with lithofacies, and paleoecology. Thus, Japanese assemblages of proetids and phacopids occurring in deep‐water clastic lithofacies have counterparts in similar settings in North China, and Japanese scutelluids and illaenids are strongly associated with shallow marine carbonate lithofacies that are similar to those of their occurrences in Australia. Japanese encrinurids occur in carbonate rocks indicative of shallow marine settings in the Kurosegawa Terrane, and they demonstrate a consistent paleobiogeographical affinity with Australia and South China. Larval ecology cannot be directly assessed for Japanese trilobite groups. However, proetids have consistently been shown to have planktonic protaspides, whereas illaenids, scutelluids, and encrinurids have benthic protaspides. Planktonic protaspides would have a greater propensity for distribution in ocean currents than benthic ones, and therefore may be of more limited paleobiogeographical utility. The combined data from the six different groups indicates that the complex paleobiogeographical patterns of the Japanese trilobite assemblages need to be interpreted with caution, and similarity of taxa does not necessarily denote paleogeographical proximity to other regions.  相似文献   

4.
Masahiro  Fujii  Yasutaka  Hayasaka  Kentaro  Terada 《Island Arc》2008,17(3):322-341
Abstract The Maizuru terrane, distributed in the Inner Zone of southwest Japan, is divided into three subzones (Northern, Central and Southern), each with distinct lithological associations. In clear contrast with the Southern zone consisting of the Yakuno ophiolite, the Northern zone is subdivided into the western and eastern bodies by a high-angle fault, recognized mainly by the presence of deformed granitic rocks and pelitic gneiss. This association suggests an affinity with a mature continental block; this is supported by the mode of occurrence, and petrological and isotopic data. Newly obtained sensitive high mass-resolution ion microprobe (SHRIMP) zircon U–Pb ages reveal the intrusion ages of 424 ± 16 and 405 ± 18 Ma (Siluro–Devonian) for the granites from the western body, and 249 ± 10 and 243 ± 19 Ma (Permo–Triassic) for the granodiorites from the eastern body. The granites in the western body also show inherited zircon ages of around 580 and 765 Ma. In addition, electron probe microanalysis (EPMA) monazite U–Th–total Pb dating gives around 475–460 Ma. The age of intrusion, inherited ages, mode of occurrence, and geological setting of the Siluro–Devonian granites of the Northern zone all show similarities with those of the Khanka Massif, southern Primoye, Russia, and the Hikami granitic rocks of the South Kitakami terrane, Northeast Japan. We propose that both the Siluro–Devonian and Permo–Triassic granitic rocks of the Northern zone are likely to have been juxtaposed through the Triassic–Late Jurassic dextral strike-slip movement, and to have originated from the Khanka Massif and the Hida terrane, respectively. This study strongly supports the importance of the strike-slip movement as a mechanism causing the structural rearrangement of the Paleozoic–Mesozoic terranes in the Japanese Islands, as well as in East Asia.  相似文献   

5.
JUN-ICHI  TAZAWA 《Island Arc》2002,11(4):287-301
Abstract    Late Paleozoic (Middle Devonian, Early Carboniferous and Middle Permian) brachiopod faunas of the South Kitakami Belt, northeast Japan, are closely related paleobiogeographically to those of the Xinjiang–Inner Mongolia–Jilin region, northwest–northeast China. This relationship suggests that the South Kitakami Belt was part of the trench or continental shelf bordering the northern and eastern margins of North China (Sino-Korea) during the Middle Devonian to Middle Permian times. Among the three models on the origin and tectonic development of the South Kitakami Belt, the strike–slip model is most consistent, but both the microcontinent model and the nappe model have considerable inconsistencies with the above paleobiogeographic and paleogeographic evidence.  相似文献   

6.
The Precambrian and lower Paleozoic units of the Japanese basement such as the Hida Oki and South Kitakami terranes have geological affinities with the eastern Asia continent and particularly strong correlation with units of the South China block. There are also indications from units such as the Hitachi metamorphics of the Abukuma terrane and blocks in the Maizuru terrane that some material may have been derived from the North China block. In addition to magmatism, the Japanese region has seen substantial growth due to tectonic accretion. The accreted units dominantly consist of mudstone and sandstone derived from the continental margin with lesser amounts of basaltic rocks associated with siliceous deep ocean sediments and local limestone. Two main phases of accretionary activity and related metamorphism are recorded in the Jurassic Mino–Tanba–Ashio, Chichibu, and North Kitakami terranes and in the Cretaceous to Neogene Shimanto and Sanbagawa terranes. Other accreted material includes ophiolitic sequences, e.g. the Yakuno ophiolite of the Maizuru terrane, the Oeyama ophiolite of the Sangun terrane, and the Hayachine–Miyamori ophiolite of the South Kitakami terrane, and limestone‐capped ocean plateaus such as the Akiyoshi terrane. The ophiolitic units are likely derived from arc and back‐arc basin settings. There has been no continental collision in Japan, meaning the oceanic subduction record is more complete than in convergent orogens seen in intracontinental settings making this a good place to study the geological record of accretion. Hokkaido lacks most of the Paleozoic history recognized in Honshu, Shikoku, Kyushu, and the Ryukyu Islands to the south and its geology reflects the Cenozoic development of two convergent domains with volcanic arcs, their approach, and eventual collision. The Hidaka terrane reveals a cross section through a volcanic arc and the main accretionary complex of the convergent system is represented by the Sorachi–Yezo terrane.  相似文献   

7.
Silurian and Devonian chitinozoans and scolecodonts are recorded from strata of the Hida‐Gaien Terrane, central Honshu. Silurian chitinozoans include Eisenackitina, Bursachitina, and the species Angochitina elongata. The latter provides a precise biostratigraphical tie between the Japanese succession and the Type Ludlow Series of the Welsh Borderland, UK, and indicates a Ludlow age (Gorstian or early Ludfordian) for the upper member of the Yoshiki Formation in the Ichinotani Valley. Chitinozoans from other Yoshiki Formation localities contain other specimens of Lagenochitinidae. Scolecodonts are more common than chitinozoans in the palynological residues, but are mostly represented by fragments or minor apparatus elements with a low biostratigraphical value. However, material from the Yoshiki and Fukuji Formations includes several species of Mochtyella as well as representatives of Oenonites, Kettnerites, Lunoprionella, Vistulella? and possibly other placognath taxa. Scolecodonts are also present in the Silurian Middle Member of the Gionyama Formation, Kyushu, including a well‐preserved jaw of Pistoprion, and fragments of putative Kettnerites and Oenonites. These finds of scolecodonts suggest close similarity in assemblages between Paleozoic polychaete faunas of Japanese terranes and those of Baltica‐Laurentia.  相似文献   

8.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

9.
Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.  相似文献   

10.
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle.  相似文献   

11.
Ordovician sequences at Huanghuachang, northern Yichang City of Hubei Province, Central China, are representative of an outer‐shelf setting of the Yangtze epicontinental sea, South China Block. Continuous drill cores of the Well Yihuang 1 penetrated the Upper Ordovician units of the Miaopo, Pagoda, Linhsiang, Wufeng, and Kuanyinchiao Formations in ascending order. Such a continuous succession gives valuable insights into environmental changes and an extinction event through Late Ordovician time. Results suggest that sluggish circulation and oligotrophic conditions were characteristic of the region from Sandbian to early Hirnantian Epochs of the Late Ordovician. Thin‐bedded limestones within the Miaopo Formation shales and nodular limestones of the Pagoda and Linhsiang Formations are mainly wackestones and mudstones with sparse and fine‐grained trilobite, cephalopod, gastropod, ostracod, and crinoid bioclasts with rare brachiopod and bivalve bioclasts, further showing gradual decreasing in abundance and grain size upwards through the succession. Such biological and lithological changes are interpreted as a trend towards a deeper and calmer seafloor below storm wave‐base. The Kwangsian Orogeny of the late Katian Epoch altered the geography of the region, creating a large embayment in the area of the Well Yihuang 1 core. Thus the sequence developed upwards to the Wufeng Formation graptolitic black shales consistent with formation in a dysoxic and stagnant embayment that excluded carbonate production and benthic biota, but ideal for preservation of planktic graptolite fossils. Bioclastic packstone and quartz grain lenses interlayered with the black shales are occasionally sourced from southeastward shallow submarine highs closed to the Cathaysian Land. Change from this interpreted sluggish ocean circulation affecting the ocean floor was delayed to the early Hirnantian Epoch, when active circulation is related to the onset of the latest Ordovician glaciation which resulted in an oxygenated ocean floor during regression, favorable for the thriving shelly Hirnantia Fauna.  相似文献   

12.
The South Kitakami Belt in the northeast Japan is unique in presence of a thick Paleozoic–Mesozoic sedimentary rocks. The Permian sedimentary succession in the Maiya area of this belt is divided into the Nishikori, Tenjinnoki, and Toyoma formations, in ascending stratigraphic order. The Tenjinnoki Formation includes the Yamazaki Conglomerate Member containing granitic clasts. We performed U–Pb dating for detrital zircon of one sample of tuffaceous sandstone from the Nishikori Formation, six samples of sandstone from the Tenjinnoki and Toyoma formations, and five granitic clasts from the Yamazaki Conglomerate using laser ablation-inductively coupled plasma-mass spectrometry. Our dating results show that the tuffaceous sandstone sample has two age peaks at 287 and 301 Ma for the Nishikori Formation, three age peaks at 320–300, 290, and 270 Ma for the Tenjinnoki and Toyoma Formation, and ages of 311, 300, and 270 Ma from granitic clasts of the Yamazaki Conglomerate. In addition, older ages of 452–435 and 380 Ma were obtained from some zircon grains of the sandstone and granitic clasts. Our results suggest igneous activity in these periods. The South Kitakami Belt's origin with respect to continental blocks has been discussed in regard of the margin of North China Block or South China Block. Based on the stratigraphic ages and timing of igneous activity, we conclude that during the Permian the South Kitakami Belt was located at the margin of the South Central Asian Orogenic Belt, near the Solonker-Xra Moron-Changchun suture and the North China Block in East Asia.  相似文献   

13.
Since the recognition of the Cambrian Evolutionary Fauna, Paleozoic Evolutionary Fauna and Modern Evolutionary Fauna[1—3], more and more paleontolo-gists have paid attention to the great Ordovician bio-diversification event which was critical to the forma-tion of the Paleozoic Evolutionary Fauna, and during which the marine organisms experienced one of the most profound evolutionary radiations of the Phan-erozoic[4]. Three biodiversity maxima have been rec-ognized on a global scale[5] wi…  相似文献   

14.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   

15.
Paleogeography of the North and South China blocks during the Cambrian   总被引:1,自引:0,他引:1  
Paleomagnetic results demonstrate that during the Cambrian the South China block was close to the equator. We suggest that it was adjacent to North Australia. This reconstruction juxtaposes Cambrian marine basins in South China and Australia, explaining the affinity between Cambrian trilobites from the two areas, as well as the existence of phosphorite deposits in the Early and Middle Cambrian in Australia and in South China. The stratigraphic similarity between the late Precambrian Sinian System in South China and the Adelaide System in Australia, and the continuing fossil affinities from Cambrian through Ordovician of both areas suggest that the proposed geographic configuration lasted from the late Precambrian (800 Ma) to Early Ordovician (470 Ma). Paleomagnetic results from the Cambrian of North China indicate that it was in the southern hemisphere at that time. Based on the paleontological evidence, we suggest that the North China block was close to Tibet, Iran and northern India during the Paleozoic.  相似文献   

16.
The Kitakami Massif of the Tohoku district, Northeast Japan, consists mainly of the South Kitakami Belt (Silurian–Cretaceous forearc shallow-marine sediments, granitoids, and forearc ophiolite) and the North Kitakami Belt (a Jurassic accretionary complex). The Nedamo Belt (a Carboniferous accretionary complex) occurs as a small unit between those two belts. An accretionary unit in the Nedamo Belt is lithologically divided into the Early Carboniferous Tsunatori Unit and the age-unknown Takinosawa Unit. In order to constrain the accretionary age of the Takinosawa Unit, detrital zircon U–Pb dating was conducted. The new data revealed that the youngest cluster ages from sandstone and tuffaceous rock are 257–248 Ma and 288–281 Ma, respectively. The Early Triassic depositional age of the sandstone may correspond to a period of intense magmatic activity in the eastern margin of the paleo-Asian continent. A 30–40 my interval between the youngest cluster ages of the sandstone and the tuffaceous rock can be explained by the absence of syn-sedimentary zircon in the tuffaceous rock. The new detrital zircon data suggest that the Takinosawa Unit can be distinguished as an Early Triassic accretionary complex distinct from the Early Carboniferous Tsunatori Unit. This recognition establishes a long-duration northeastward younging polarity of accretionary units, from the Carboniferous to Early Cretaceous, in the northern Kitakami Massif. Lithological features and detrital zircon spectra suggest that the Early Triassic Takinosawa Unit in the Nedamo Belt is comparable with the Hisone and Shingai units in the Kurosegawa Belt in Shikoku. The existence of this Early Triassic accretionary complex strongly supports a pre-Jurassic geotectonic correlation and similarity between Southwest and Northeast Japan.  相似文献   

17.
The new plants documented here, including a representative of the trimerophytesPsilophyton primitiuum sp. nov., a questionable rhyniophyte or trimerophyteHedeia sinica sp. nov., a prelycopodBragwanathia sp. and two species of zosterophyllophytes,Zosterophyllum australianum Lang and Cookson 1930 and2. sp. 1, from the Posongchong Formation of southeastern Yunnan, China, add to the known floral diversity of the Early Devonian of this region. Two sections of the Posongchong Formation, Changputang section of Wenshan district and Gegu section of Mengzi district also are introduced. After comparing the plants with those of the coeval flora of Australia and considering the data of recent paleocontinental reconstructions, the authors suggest that there is a northeastern Gondwana phytogeographic unit during the early Devonian comprising Australia, South China Block and perhaps Shan-Thai Block. The similarity of the floral component between Australia and South China is discussed. Because both Australia and South China also have dominant or endemic taxa, each might be recognized as a subunit, separately characterized byHedeia for Australia andEophyllophyton for South China. Project supported by the National Natural Science Foundation of China (Grant Nos. 49372075 and 49742004)  相似文献   

18.
A well-preserved radiolarian fauna from a clastic unit of the Khabarovsk accretionary complex (southern part of the Badzhal accretionary wedge terrane in the Russian Far East) is assigned to the basal part of the Pseudodictyomitra carpatica zone. The age of the fauna is most likely late Tithonian. This is the first reliable dating of the clastic unit and makes it possible to constrain the timing of subduction accretion in the Badzhal terrane. The Khabarovsk complex is correlated chronologically with the Bikin and Samarka terranes (Russian Far East), Mino, Southern Chichibu and North Kitakami terranes (Japan), and Nadanhada terrane (northeast China).  相似文献   

19.
Abstract Geological mapping using detailed tectonic and complex radiolarian analysis revealed significant northward displacement of a number of Russian Far and Northeast Asia terranes. It was recorded that some terranes possibly crossed the equator. Terranes of north-east Russia were composed of different allochthonous formations, ranging in age from Middle Triassic to Maestrichtian-Paleocene and accumulated from the margin to oceanic basins. The Middle to Upper Triassic interval included two formations: (i) volcanogenic, consisting of typical volcanic rocks of the island arcs (up to 800 m thick); and (ii) a chert-limestone-terrigenous one composed of marginal sandstone, siltstone, limestone and tuffic chert (about 400 m). Lower Jurassic allochthonous formations are represented by chert-terrigenous (about 300 m) and jasper-alkaline-basaltic (WPB-type) seamount deposits (about 100 m). Middle Jurassic to Hauterivian allochthonous terranes from the northern part of the Koryak-Kamchatka region include five formations: jasper (bedding jaspers with condensed limestone lenses with Buchias, 80 m), jasper-basalt (with MORB, 100-150 m), ferrotitanic basalt (WPB with lenses of jasper mainly composed of genus Parvicingula, about 75%, 150 m), terrigenous-volcanic (with MORB, IAT, CA basalts and olistostrome, 600 m), tuffic-jasper-basalt (MORB and deposits of arc-trench system, about 500 m) with the same age according to radiolarian data. Aptian? Albian-Maestrichtian ones are predominantly terrigenous-tuffaceous-siliceous. Moreover, the Early and Middle Jurassic faunas of the northwest Pacific margin contain many boreal elements similar to those of New Zealand (Southern Hemisphere), Japan, ODP Site 801. The Late Jurassic faunas of the Koryak and Kamchatka region are mainly North Tethyan and seldom Central Tethyan and are very closely related to those of the Americas. The Tithonian to Early Cretaceous radiolarian are predominantly Central Tethyan and Equatorial in contrast to Boreal Late Cretaceous. The combining in the same region at 60°N Pacific margin of the formations accumulated in different tectonic paleoenvironments and paleoclimatic provinces, is good evidence for the possible significant northward displacement of some terranes in the northwestern Pacific.  相似文献   

20.
Ulrich Knittel 《Island Arc》2011,20(1):138-146
The discovery of a low‐grade meta‐rhyolite with an age of 83 ± 1 Ma documents a so‐far unknown episode of magmatism in northern Mindoro Island, which is located at the northeastern edge of the Palawan Continental Terrane. This terrane is thought to have rifted from Southeast China in the Oligocene as a result of the opening of the South China Sea. Rhyolite volcanism was widespread in southeastern China in the Cretaceous; hence this discovery provides the first direct link between the geological evolution of the Palawan Continental Terrane and Southeast China in Cretaceous time. In addition, it provides further evidence that the northeastern part of Mindoro is indeed part of the Palawan Continental Terrane and not part of the Philippine Mobile Belt to the east, a previously contentious issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号