首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterizing hydraulic conductivity with the direct-push permeameter   总被引:2,自引:0,他引:2  
The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a depth at which a K estimate is desired. A short hydraulic test is then performed by injecting water through the screen at a constant rate (less than 4 L/min) while pressure changes are monitored at the transducer locations. Hydraulic conductivity is calculated using the injection rate and the pressure changes in simple expressions based on Darcy's Law. In units of moderate or higher hydraulic conductivity (more than 1 m/d), testing at a single level can be completed within 10 to 15 min. Two major advantages of the method are its speed and the insensitivity of the K estimates to the zone of compaction created by tool advancement. The potential of the approach has been assessed at two extensively studied sites in the United States and Germany over a K range commonly faced in practical field investigations (0.02 to 500 m/d). The results of this assessment demonstrate that the DPP can provide high-resolution K estimates that are in good agreement with estimates obtained through other means.  相似文献   

2.
New Method for Continuous Transmissivity Profiling in Fractured Rock   总被引:2,自引:0,他引:2  
A new method is presented to search for hydraulically transmissive features in open boreholes in bedrock. A flexible borehole liner made of a watertight, nylon fabric is filled with water to create a constant driving head to evert (reverse of invert) the liner down the hole so that the liner pushes the borehole water out into transmissive fractures or other permeable features. The descent rate is governed by the bulk transmissivity of the remaining permeable features below the liner. Initially, the liner descent rate or velocity is a measure of transmissivity (T) of the entire hole. As the everting liner passes and seals each permeable feature, changes in the liner velocity indicate the position of each feature and an estimate of T using the Thiem equation for steady radial flow. This method has been performed in boreholes with diameters ranging from 96 to 330 mm. Profiling commonly takes a few hours in holes 200‐ to 300‐m long. After arrival of the liner at the bottom of the hole, the liner acts as a seal preventing borehole cross connection between transmissive features at different depths. Liner removal allows the hole to be used for other purposes. The T values determined using this method in a dolostone aquifer were found to be similar to the values from injection tests using conventional straddle packers. This method is not a replacement for straddle‐packer hydraulic testing of specific zones where greater accuracy is desired; however, it is effective and efficient for scanning entire holes for transmissive features.  相似文献   

3.
In a recent field study, the performance of four production wells was evaluated. The intake of a vertical turbine test pump was set below the top of the screened interval of the wells due to anticipated drawdown. Water level sounding tubes were welded to the well casing at various depths in each well. Drawdown data collected at various depths were used to evaluate the vertical head distribution in the wells under various pumping stresses. A direct relationship was observed between the head loss and the location of the pump intake in the production wells. A vertical head profile developed, suggesting that the location of the pump intake controlled the location of water production from the aquifer. The head loss in the wells observed during pumping was directly proportional to well discharge and annulus size between the well casing and the vertical turbine pump shaft. The pressure differences that developed in the wells created increased drawdown in water level sounding tubes installed deep in the wells compared to the total drawdown observed in the production wells. Certain implications should be considered based on the evaluation of the data obtained from this study. Because water management decisions are made using well test data, the quality of the data is crucial. In instances where well performance is evaluated using water level data collected from water level sounding tubes that are located close to a pump intake (in this case deep in the well), it should be recognized that well performance could be underestimated.  相似文献   

4.
As part of an agricultural non-point-source study in the Conestoga River head waters area in Pennsylvania, different methods for collecting ground water samples from a fractured carbonate-rock aquifer were compared. Samples were collected from seven wells that had been cased to bedrock and drilled as open holes to the first significant water-bearing zone. All samples were analyzed for specific conductance, dissolved oxygen, and dissolved-nitrogen species. Water samples collected by a point sampler without pumping the well were compared to samples collected by a submersible pump and by a point sampler after pumping the well. Samples collected by using a point sampler, adjacent to major water-bearing zones in an open borehole without pumping the well, were not statistically different from samples collected from the pump discharge or from point samples collected adjacent to major water-bearing zones after pumping the well. Samples collected by using a point sampler without pumping the well at depths other than those adjacent to the water-bearing zones did not give the same results as the other methods, especially when the water samples were collected from within the well casings. It was concluded that, for the wells at this site, sampling adjacent to major water-bearing zones by using a point sampler without pumping the well provides samples that are as representative of aquifer conditions as samples collected from the pump discharge after reaching constant temperature and specific conductance, and by using a point sampler after pumping the well.  相似文献   

5.
The Guelph Permeameter (GP) method for simultaneous, in situ measurement in the vadose zone of field-saturated hydraulic conductivity (KfS), sorptivity (S) and the conductivity-pressure head relationship [K(Ψ)] is described and discussed.
The method involves measuring the steady-state liquid recharge, Q, necessary to maintain a constant depth of water, H, in an uncased, cylindrical well of radius, a, finished above the water table. An "in-hole" Mariotte bottle device is used to maintain H and to measure Q.
Step-by-step procedures with example calculations are given for obtaining KfS, S and K( Ψ ). Techniques for assessing the results are also given.
Although detailed field verification of the GP method is still incomplete, the studies conducted so far are quite encouraging.
Theoretical and practical advantages afforded by the GP method make it a desirable and cost-effective means for in situ measurement of Kfs, S and K( Ψ ), which are three of the most important parameters governing the flow of water and other wetting liquids in the vadose zone.  相似文献   

6.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Using high hydraulic conductivity nodes to simulate seepage lakes   总被引:6,自引:0,他引:6  
In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10(-3) m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.  相似文献   

8.
9.
Siphon dredging with a float tank and different siphon suction heads, including the plain-type and wedge-type with/without side holes, through flume experiments were used to investigate the reservoir sediment removal efficiency. The experiment revealed maximum suction pressure and velocity when the distance from the suction head to the bed was about 25% of suction head diameter. Suction pressure decreased rapidly as the distance from the suction head to the bed increased to 50% and 100% of suction head diameter. Suction pressure achieved by wedge-type suction head was only 16.9-17.6% of that around plain-type suction head, and the velocity around wedge-type suction head was 64.7-68.4% of that around plain-type suction head. However the plain-type suction head was easily clogged doe to its long bobbing period. The average bobbing period for the plain-type suction head was about 105-263% that of the wedge-type suction head. The sediment removal efficiency was achieved when float tank diameter was 3-4 times that of the suction head. Flow discharge and sediment removal increased as the suction head diameter and side hole diameter increased, respectively. The most efficient side hole area was an area within 15% of suction head area. Totally, the optimal sediment removal efficiency was the wedge angle of 20° with 3 side holes. The efficiency of sediment dredging by siphon suction with a suction tube passing through the dam bottom was better than that with suction passing over the top of the dam. The wedge-type siphon suction with a float tank is preferable for sediment dredging in small reservoirs because it is inexpensive and efficient.  相似文献   

10.
The accumulation of sediment within salmonid redd gravels can have a detrimental impact on the development of salmonid embryos; therefore, redd sedimentation represents a potential limiting factor for salmonid reproduction. The links between redd sedimentation, the dissolved oxygen content of intragravel water and salmonid embryo survival within the upper and middle parts of the Hampshire Avon catchment in southern England are explored. Measurements of surface and intragravel water quality and redd properties were undertaken for artificial redds constructed at known spawning sites. Salmonid embryos were also planted into artificial redds adjacent to the monitoring equipment. The rate of sedimentation of the newly cleaned redd gravels demonstrated a non‐linear decrease over time, which is attributed to a particle‐size‐selective depositional process. The results of the study confirm that low embryo survival and low dissolved oxygen concentrations in intragravel water can be attributed to the accumulation of sediment within the redd gravels. This was found to produce a reduction in redd permeability, which limited the interchange of surface and intragravel water and, therefore, the supply of dissolved oxygen to the intragravel environment. In view of the diminished status of salmonids within many of the UK's chalk rivers and streams, the results highlight the need for management initiatives aimed at reducing redd sedimentation and thereby optimizing salmonid embryo incubation success. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
We present transient streaming potential data collected during falling‐head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl) of the sand samples. A semi‐empirical model based on the falling‐head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl. The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling‐head permeameter tests can be used to estimate both K and Cl. They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications.  相似文献   

12.
Previous theoretical studies have shown that tank uplift, that is, separation of the tank base from the foundation, generally reduces the base shear and the base moment. However, there is a paucity of experimental investigations concerning the effect of uplift on the tank wall stresses, which is the principal parameter that controls the seismic design of liquid‐storage tanks. This paper reports a series of shake table experiments on a polyvinyl chloride model tank containing water. A comparison of the seismic behaviour of the tank with and without anchorage is described. Stochastically generated ground motions, based on a Japanese design spectrum, and three tank aspect ratios (liquid‐height/radius) are considered. Measurements were made of the stresses at the outer shell of the tank, the tank wall acceleration and the horizontal displacement at the top of the tank. While the top displacement and the tank shell acceleration increased when uplift was allowed, axial compressive stresses decreased by between 35% and 64% with tank uplift. The effect of uplift on the hoop stresses was variable depending on the aspect ratio. A comparison of experimental values with a numerical model is provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Hydraulic conductivity (K) and specific storage (S(s)) are required parameters when designing transient groundwater flow models. The purpose of this study was to evaluate the ability of commonly used hydrogeologic characterization approaches to accurately delineate the distribution of hydraulic properties in a highly heterogeneous glaciofluvial deposit. The metric used to compare the various approaches was the prediction of drawdown responses from three separate pumping tests. The study was conducted at a field site, where a 15 m × 15 m area was instrumented with four 18-m deep Continuous Multichannel Tubing (CMT) wells. Each CMT well contained seven 17 cm × 1.9 cm monitoring ports equally spaced every 2 m down each CMT system. An 18-m deep pumping well with eight separate 1-m long screens spaced every 2 m was also placed in the center of the square pattern. In each of these boreholes, cores were collected and characterized using the Unified Soil Classification System, grain size analysis, and permeameter tests. To date, 471 K estimates have been obtained through permeameter analyses and 270 K estimates from empirical relationships. Geostatistical analysis of the small-scale K data yielded strongly heterogeneous K fields in three-dimensions. Additional K estimates were obtained through slug tests in 28 ports of the four CMT wells. Several pumping tests were conducted using the multiscreen and CMT wells to obtain larger scale estimates of both K and S(s). The various K and S(s) estimates were then quantitatively evaluated by simulating transient drawdown data from three pumping tests using a 3D forward numerical model constructed using HydroGeoSphere (Therrien et al. 2005). Results showed that, while drawdown predictions generally improved as more complexity was introduced into the model, the ability to make accurate drawdown predictions at all CMT ports was inconsistent.  相似文献   

14.
The steady seepage rates at large times from flat-bottomed channels and channels of semi-circular cross-section were determined in laboratory tank experiments using various sands. Good agreement was found with the theoretical relationships which assume the flow to be confined to a saturated region bounded by a capillary-fringe surface and to be uniform and vertical at great depths. The steady large-time seepage rates were also obtained in laboratory sand-tank experiments for the three-dimensional cases of seepage from circular shallow ponds and hemispherical sources. These agreed with relationships obtained using an electrolytic tank analogue with approximate boundary conditions assumed for the flow region. A method of analysis of large-time seepage measurements from irrigation channels and infiltrometer rings is proposed, which yields the hydraulic conductivity and pressure head at the wetting front from experiments with different size channels or rings.  相似文献   

15.
The constant‐head permeameter test (CHPT) is widely used in sandy samples as a standard method in the laboratory to investigate hydraulic conductivity (K). However, it neither can be used to consistently determine directional hydraulic conductivity (DHC) nor guarantee the comparability of measured K values of samples with different sizes. Therefore, this paper proposes an integrated laboratory method, called modified CHPT (MCHPT), for the efficient determination and verification of consistent DHC values in fine‐to‐medium sandy sediments, based on a new methodological framework. A precise and standardized procedure for preparing the experimental setup of MCHPT was conducted, based on the integrated experimental setup of CHPT and tracer tests. Moreover, a formula was yielded for the time‐optimized sample saturation control. In comparison with grain size‐based methods, the validity of consistent Kh and Kv values determined by MCHPT was convincing.  相似文献   

16.
水头梯度变差值演化图象及强地震危险区预测方法研究   总被引:3,自引:0,他引:3  
在类比地温梯度计算方法的基础上,将区域地下流压场中众多井孔的水位埋深归一化为每米井深或每百米井深的压力水头高度,即单位压力水头高度,定义为水头梯度值,并通过对水头梯度变差值时空强全方位绘制出其动态演化图象,进而对未来强地震发生的潜在危险区进行预测。经唐山7.8级 震内符检验,效果较为理想。  相似文献   

17.
When a slug test is conducted in a highly permeable aquifer, a shallow pressure transducer in the well casing produces an oscillatory pressure head that is representative of the water level fluctuation, whereas a deep pressure transducer in the well casing yields an oscillatory pressure head that is different from the water level change. Although the solutions for shallow and deep pressure head are different, it is found that the ratios of the subsequent extremity displacements are in an identical relationship (an extremity can be a maximum or a minimum in the oscillatory pressure head). Based on this relationship, an analytical data analysis method for the determination of the hydraulic conductivity is developed for both shallow and deep pressure transducer data. This analytical method is applied to the pressure head measured at different depths in the well casing of a well partially penetrating an unconfined coarse sand aquifer. Satisfactory results are obtained, validating the applicability of this analytical method for pressure transducer data at any depth in a well casing. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Data from a large-scale canal-drawdown test were used to estimate the specific yield (sy) of the Biscayne Aquifer, an unconfined limestone aquifer in southeast Florida. The drawdown test involved dropping the water level in a canal by about 30 cm and monitoring the response of hydraulic head in the surrounding aquifer. Specific yield was determined by analyzing data from the unsteady portion of the drawdown test using an analytical stream-aquifer interaction model (Zlotnik and Huang 1999). Specific yield values computed from drawdown at individual piezometers ranged from 0.050 to 0.57, most likely indicating heterogeneity of specific yield within the aquifer (small-scale variation in hydraulic conductivity may also have contributed to the differences in sy among piezometers). A value of 0.15 (our best estimate) was computed based on all drawdown data from all piezometers. We incorporated our best estimate of specific yield into a large-scale two-dimensional numerical MODFLOW-based ground water flow model and made predictions of head during a 183-day period at four wells located 337 to 2546 m from the canal. We found good agreement between observed and predicted heads, indicating our estimate of specific yield is representative of the large portion of the Biscayne Aquifer studied here. This work represents a practical and novel approach to the determination of a key hydrogeological parameter (the storage parameter needed for simulation and calculation of transient unconfined ground water flow), at a large spatial scale (a common scale for water resource modeling), for a highly transmissive limestone aquifer (in which execution of a traditional pump test would be impractical and would likely yield ambiguous results). Accurate estimates of specific yield and other hydrogeological parameters are critical for management of water supply, Everglades environmental restoration, flood control, and other issues related to the ground water hydrology of the Biscayne Aquifer.  相似文献   

19.
Regular aquifer storage recovery, ASR, is often not feasible for small‐scale storage in brackish or saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. Flow barriers that partially penetrate a brackish or saline aquifer prevent a stored volume of fresh water from expanding sideways, thus increasing the recovery efficiency. In this paper, the groundwater flow and mixing is studied during injection, storage, and recovery of fresh water in a brackish or saline aquifer in a flow‐tank experiment and by numerical modeling to investigate the effect of density difference, hydraulic conductivity, pumping rate, cyclic operation, and flow barrier settings. Two injection and recovery methods are investigated: constant flux and constant head. Fresh water recovery rates on the order of 65% in the first cycle climbing to as much as 90% in the following cycles were achievable for the studied configurations with constant flux whereas the recovery efficiency was somewhat lower for constant head. The spatial variation in flow velocity over the width of the storage zone influences the recovery efficiency, because it induces leakage of fresh water underneath the barriers during injection and upconing of salt water during recovery.  相似文献   

20.
The usefulness of the apparent redox potential discontinuity (aRPD) in assessments of marine benthic habitat quality was explored at two intertidal mudflats along the north Pacific coast of Canada. Two transects were established at each intertidal site, with three sediment biogeochemistry cores collected from each transect four times over the summer of 2016. Measurements of the sediment pore water dissolved oxygen (DO) content and redox (Eh) conditions were taken at the surface of the core (measured vertically), as well as at increasing depths (1 cm between readings) into the sediment (measured horizontally through predrilled holes in the biogeochemistry corer). While oxic, anoxic, oxidized, and reduced sediment pore water was observed above and below the aRPD, in general, sediment above the aRPD had higher DO content, and higher Eh values than sediment below the aRPD. Therefore, the aRPD depth can be used as a relative indicator of sediment pore water DO and Eh conditions: sediment with a deeper aRPD depth has more available DO, and the pore water has higher Eh values (more oxidized or less reduced) than sediment with a shallower aRPD depth. As such, the aRPD depth is a useful parameter to include in models that assess the quality of marine benthic habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号