首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term variations of solar activity significantly affect terrestrial phenomena. Studies have shown cyclic components in solar activity and geophysical phenomena (e.g., the Schwabe, Hale, Gleissberg, and Suess cycles, and a cycle of about 2300 years). In this paper, the wavelet technique is employed to investigate the Gleissberg cycle in solar variations during 5000 BC–1995 AD. Analysis shows time-variable characteristics in the Gleissberg solar cycle over the period; no obvious correlation between the Gleissberg and Suess cycles has been found.  相似文献   

2.
Analyses of the summer temperature anomalies in northern Fennoscandia for A.D. –1991 and mean annual temperature in the northern hemisphere for A.D. 1000–1990 (both reconstructed by means of dendrochronological methods) are performed using Fourier and wavelet approaches. It is revealed that the century-type (65–140 yr) periodicity is present in both series during most of the full time range. A comparison of the northern Fennoscandian temperature record with a variety of indicators of solar activity (direct measurements and proxies) shows that this century-scale periodicity most probably was forced by a centennial cycle of solar activity (Gleissberg cycle). Despite the fact that the connection between the centennial variation of global northern hemispheric temperature and that of the Sun's activity is weaker, a link between the two can also not be excluded. The results obtained give us new evidence of the reality of the solar–climate link over a record long-time scale (at least during the last millennium). Variable length of the century-long temperature periodicity may reflect the corresponding changes in the length of the Gleissberg solar cycle. The effects, which can obscure the Sun's influence on the global hemispheric climate, are discussed.  相似文献   

3.
“TOY” Dynamo to Describe the Long-Term Solar Activity Cycles   总被引:1,自引:0,他引:1  
D. Volobuev 《Solar physics》2006,238(2):421-430
Secular variations of solar activity (Gleissberg and Suess cycles) have approximately 80 – 130 and 200 year periods. They are manifested in both observed and proxy data. Here, we show that the basic dynamic features of the Schwabe cycle (asymmetry of its growth and decay phases) and secular cycles (multi-frequency structure and irregular Grand-extremes), as well as a connection between them, can be described by parameter tuning of the electromechanical “toy” dynamo system which has been widely used to model the inversions of the geomagnetic field. An amplitude-frequency diagram for the model magnetic flux has the same shape as the directly observed and reconstructed sunspot area indices. An erratum to this article is available at .  相似文献   

4.
The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4′ (1793–1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610–2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.  相似文献   

5.
Two sets of nitrate (NO3 ) concentration data in Central Greenland ice, obtained through the GISP2 collaboration and by the University of Kansas, were analyzed statistically. The two records correlate well over time scales from a few years up to a century. They both contain quasi five-year, decadal and century-type time variations. A quasi five-year periodicity resulting from increases in the mean nitrate concentration before and after maximum sunspot number was confirmed. A tendency of solar proton events to occur more frequently during the rise/decline phases of the solar cycle may cause a quasi five-year variation. Century-type (60–110 yr) variability in nitrate outstrips the corresponding Gleissberg cycle in sunspots by 12–17 years and changes synchronously (correlates with zero phase shift) with the smoothed length of the solar Schwabe cycle. A significant correlation between century-type periodicities for nitrates in Greenland ice and northern Fennoscandian temperatures was established. The results show that despite a strong dependence on local meteorology, nitrate concentration in ice contains valuable information about global geophysical phenomena in the past.  相似文献   

6.
The shape of the Sun’s secular activity cycle is found to be a saw-tooth curve. The additional Schwabe cycle 4′ (1793–1799) suggested by Usoskin, Mursula, and Kovaltsov (2001a) is taken into account in the telescopic sunspot record (1610–2001). Instead of a symmetrical Gleissberg cycle, a saw-tooth of exactly eight Schwabe sunspot maxima (‘Pulsation’) is found. On average, the last sunspot maximum of an eight-Schwabe-cycle saw-tooth pulsation has been about three times as high as its first maximum. The Maunder Minimum remains an exception to this pattern. The Pulsation is defined as a secular-scale envelope of Schwabe-cycle maxima, whereas the Gleissberg cycle is a result of long-term smoothing of the sunspot series.  相似文献   

7.
The study of a nonlinear chaotic map of 11-year cycle maxima evolution recently derived from observations is presented with the purpose of predicting the features of the long-term variability of solar activity. It is stressed that dynamical forecast is limited by the Lyapunov time and a statistical approach can be justified due to the ergodic properties of the chaotic evolution. The Gleissberg variation is described as a chaotic walk and its distribution over length is shown to be broad. The global minima are identified as laminar slots of temporal intermittency and their typical distribution over length is also given. We note that a long sunspot cycle can be used as a precursor of the global minimum and a close sequence of global minima (once in approximately 1500–2000 years) may be responsible for the climatic changes (Little Ice Ages).  相似文献   

8.
Sunspot numbers are available for the past four centuries. However, solar activity indices with a longer time span are required by geophysicists and solar physicists. The yearly naked-eye sunspot number in the past is reconstructed using observations recorded in historical documents. Some studies from different solar proxies (including radiocarbon and aurora records) show the presence of the so-called Suess cycle (around 200 years) in solar variability. In this work, a modified Lomb–Scargle periodogram analysis is used to investigate the Suess cycle in naked-eye observations of sunspots during 200 BC–1918 AD. The most relevant characteristic of the periodogram is a cycle with a frequency very close to the Suess cycle, though this cycle is not significant statistically.  相似文献   

9.
Long-term data on the evolution of the parameters of motion of 15 artificial satellites of the Earth in orbits with minimal heights of 400–1100 km were used to study the density variations in the upper atmosphere at minimums of four cycles of solar activity. It was found that the density at these heights considered increased by about 7% at the minimum of solar cycle 20 as compared to solar cycle 19. Later, the density fell rather linearly at the minimums of cycles 21 and 22. The statistical processing of the data for solar cycles 20–22 demonstrated that the density decreased by 4.6% over ten years and by 9.9% over 20 years. Analyzing the density variations during the four cycles of solar activity, we found that the long-term decrease in density observed at the minimums of cycles 20–22 is caused mainly by specific variations of the solar activity parameters (namely, the solar radio flux and the level of geomagnetic disturbance).__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 177–183.Original Russian Text Copyright © 2005 by Volkov, Suevalov.  相似文献   

10.
During the last few years the Sun and solar wind have shown a behavior that was so unexpected that the phenomena was described as “the strange solar minimum”. It has been speculated that the 23/24 solar cycle minimum may have indicated the onset of a Maunder-Minimum-type Grand Minimum. Here we review what is known from 1500 years of proxy data about Maunder-type Grand Minima and the minima of the cyclic Centennial Gleissberg variations. We generate criteria that distinguish between the two types of event. Applying these criteria to the observed solar terrestrial data we conclude that the unexpected behavior began well before the solar cycle 23/24 minimum. The data do not support the Maunder Minimum conjecture. However, the behavior can be understood as a minimum of the Centennial Gleissberg Cycle that previously minimized in the beginning of the 20th century. We conclude that the Centennial Gleissberg Cycle is a persistent variation that has been present 80% of the time during the last 1500 years and should be explained by solar dynamo theory.  相似文献   

11.
We show in this short note that the method of singular spectrum analysis (SSA) is able to clearly extract a strong, clean, and clear component from the longest available sunspot (International Sunspot Number, ISN) time series (1700?–?2015) that cannot be an artifact of the method and that can be safely identified as the Gleissberg cycle. This is not a small component, as it accounts for 13% of the total variance of the total original signal. Almost three and a half clear Gleissberg cycles are identified in the sunspot number series. Four extended solar minima (XSM) are determined by SSA, the latest around 2000 (Cycle 23/24 minimum). Several authors have argued in favor of a double-peaked structure for the Gleissberg cycle, with one peak between 55 and 59 years and another between 88 and 97 years. We find no evidence of the former: solar activity contains an important component that has undergone clear oscillations of \(\approx90\) years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a \(\approx90\)-year Gleissberg cycle, and a double-peaked (\(\approx10.0\) and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.  相似文献   

12.
We examine the `Group' sunspot numbers constructed by Hoyt and Schatten to determine their utility in characterizing the solar activity cycle. We compare smoothed monthly Group sunspot numbers to Zürich (International) sunspot numbers, 10.7-cm radio flux, and total sunspot area. We find that the Zürich numbers follow the 10.7-cm radio flux and total sunspot area measurements only slightly better than the Group numbers. We examine several significant characteristics of the sunspot cycle using both Group numbers and Zürich numbers. We find that the `Waldmeier Effect' – the anti-correlation between cycle amplitude and the elapsed time between minimum and maximum of a cycle – is much more apparent in the Zürich numbers. The `Amplitude–Period Effect' – the anti-correlation between cycle amplitude and the length of the previous cycle from minimum to minimum – is also much more apparent in the Zürich numbers. The `Amplitude–Minimum Effect' – the correlation between cycle amplitude and the activity level at the previous (onset) minimum is equally apparent in both the Zürich numbers and the Group numbers. The `Even–Odd Effect' – in which odd-numbered cycles are larger than their even-numbered precursors – is somewhat stronger in the Group numbers but with a tighter relationship in the Zürich numbers. The `Secular Trend' – the increase in cycle amplitudes since the Maunder Minimum – is much stronger in Group numbers. After removing this trend we find little evidence for multi-cycle periodicities like the 80-year Gleissberg cycle or the two- and three-cycle periodicities. We also find little evidence for a correlation between the amplitude of a cycle and its period or for a bimodal distribution of cycle periods. We conclude that the Group numbers are most useful for extending the sunspot cycle data further back in time and thereby adding more cycles and improving the statistics. However, the Zürich numbers are slightly more useful for characterizing the on-going levels of solar activity.  相似文献   

13.
Historical records of sunspots and aurorae are valuable information to examine variations of solar activity and the terrestrial climate on a long-term scale. We have collected the historical records of Korea during the 11th–18th century. Through a power-spectrum analysis of these data, we have found solar activity cycles, which coincide with the Schwabe cycle and the Gleissberg cycle on short and long-term periods, respectively.  相似文献   

14.
Systematic measurements of the differential Doppler velocity of the Sun have been performed in Crimea from 1974 through 1988 (total 987 days, 6197 hours of observations). They confirm the presence of a long-term phase-coherent solar pulsation with a period of 160.010 min. On the other hand, the analysis of new data suggests that solar 160 min pulsation might, in frequency, have a multiplet fine structure. In particular, large changes of amplitude and phase of the pulsation over the years 1982–1986 may indicate that during the last few years we have been observing the solar 160 min oscillation of the second portion of the 22 year solar cycle.It is further noted that the beat period of the two closely spaced frequencies (periods are 160.0101 and 160.0126 min) equals 19.5 ± 1.1 year, which is in good agreement with the average length of the solar magnetic activity cycle, 20–22 years. Being verified, this unpredicted property of the pulsation can offer a novel possibility for probing the Sun's interior and perhaps for the study of the internal rotation and 11(22) year cycle of a star.  相似文献   

15.
Although solar ultraviolet (UV) irradiance measurements have been made regularly from satellite instruments for almost 20 years, only one complete solar cycle minimum has been observed during this period. Solar activity is currently moving through the minimum phase between cycles 22 and 23, so it is of interest to compare recent data taken from the NOAA-9 SBUV/2 instrument with data taken by the same instrument during the previous solar minimum in 1985–1986. NOAA-9 SBUV/2 is the first instrument to make continuous solar UV measurements for a complete solar cycle. Direct irradiance measurements (e.g., 205 nm) from NOAA-9 are currently useful for examining short-term variations, but have not been corrected for long-term instrument sensitivity changes. We use the Mgii proxy index to illustrate variability on solar cycle time scales, and to provide complementary information on short-term variability. Comparisons with contemporaneous data from Nimbus-7 SBUV (1985–1986) and UARS SUSIM (1994–1995) are used to validate the results obtained from the NOAA-9 data. Current short-term UV activity differs from the cycle 21–22 minimum. Continuous 13-day periodicity was observed from September 1994 to March 1995, a condition which has only been seen previously for shorter intervals during rising or maximum activity levels. The 205 nm irradiance and Mgii index are expected to track very closely on short time scales, but show differences in behavior during the minimum between cycles 22 and 23.  相似文献   

16.
We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8–23. In the study we have used sunspot data for the period 1832–1976, flare index data for the period 1936-1993, Hα flare data 1993–1998 and solar active prominences data for the period 1957–1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.  相似文献   

17.
Long-term homogeneous observations of solar activity or many solar cycles are essential for investigating many problems in solar physics and climatology. The one key parameter used in most long-term studies is the Wolf sunspot number, which is susceptible to observer bias, particularly because it is highly sensitive to the observer's ability to see the smallest sunspots. In this paper we show how the Wolf sunspot number can be derived from the number of sunspot groups alone. We utilize this approach to obtain a Group Wolf number. This technique has advantages over the classical method of determining the Wolf number because corrections for observer differences are reduced and long-term self-consistent time series can be developed. The level of activity can be calculated to an accuracy of ± 5% using this method. Applying the technique to Christian Horrebow's observations of solar cycles 1, 2, and 3 (1761–1777), we find that the standard Wolf numbers are nearly homogeneous with sunspot numbers measured from 1875 to 1976 except the peak of solar cycle 2 is too low by 30%. This result suggests that further analyses of early sunspot observations could lead to significant improvements in the uniformity of the measurements of solar activity. Such improvements could have important impacts upon our understanding of long-term variations in solar activity, such as the Gleissberg cycle, or secular variations in the Earth's climate.  相似文献   

18.
We have investigated common burst spectral features for the 20th cycle of solar activity. The maximum daily radio fluxes in 8 frequency ranges are analysed. For every year the classification of these daily spectra is obtained by cluster analysis methods. There are two spectral minima for average spectra of clusters (in frequency ranges 4–3 and 0.5–0.25 GHz). As a rule their positions do not change during the solar cycle.Every annual spectrum of weak bursts has three minima (in frequency ranges 4–3, 2–1, and 0.5–0.25 GHz). The positions of these minima remain invariable during the solar cycle. But anuual spectra of strong bursts depend essentially on the phase of solar activity.The basic features of most burst spectra can be explained by gyrosynchrotron radiation of thermal and nonthermal electrons and plasma radiation at the plasma frequency and its second harmonic.  相似文献   

19.
Lotova  N.A.  Obridko  V.N.  Vladimirskii  K.V.  Bird  M.K.  Pätzold  M.  Sieber  W.  Güsten  R.  Korelov  O.A. 《Solar physics》1999,189(2):387-398
Long-term scintillation measurements of the solar wind formation zone at solar elongations ranging from 1°–8° (Sun impact parameters: 4–30 R ) were recorded using the water maser source IRC-20431 at the wavelength =1.35 cm during its annual solar occultations in December 1981–1998. Dramatic changes in the spatial dependence of the scintillation index were recorded over the course of the 11-year solar cycle. Markedly diminished scattering, attributed to a pronounced heliolatitude effect, was observed at the closest solar approach distances in the years around solar activity minimum. From parallel investigations of the solar magnetic field structure it was determined that the field strength at the source of the solar wind streamlines is the governing factor for the solar wind acceleration process. Particularly apparent in the scintillation data during solar activity minimum is the increasing role of the polar coronal holes with their associated open magnetic field structure. The dependence of the solar scattering intensity on heliolatitude fades in the years of high solar activity as the level of scintillations increases at polar latitudes.  相似文献   

20.
Prominences, in contrast to other solar activity features, may appear at all heliographic latitudes. The position of zones where prominences are mainly concentrated depends on the cycle phase of solar activity. It is shown, for prominence observations made at Lomnický tít over the period 1967–1996, how the position of prominence zones changes over a solar cycle, and how these zones could be connected with other solar activity features. Our results obtained could be an additional source to do a better prediction of solar activity. Time-latitudinal distribution is also shown for the green corona (Fexiv, 530.3 nm). Distribution of the green coronal maxima shows that there are equator-migrating zones in the solar corona that migrate from latitudes of 45° (starting approximately 2–3 years after the cycle start) to higher latitudes 70°, and then turn (around the cycle maximum) towards the equator, reaching the equator in the next minimum (this duration lasts 18–19 years). Polar branches separate from these zones at the cycle minimum (2–3 years before above-mentioned zones) at latitudes of 50°, reaching the poles at the maximum of the present cycle. The picture becomes dim when more polar prominence zones are observed. Prominences show both the poleward and equatorward migration. Comparison between both solar activity features is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号