首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The chemical composition of primary cosmic rays with energies from 1015 to 1016.5 eV, so called “knee” region, is examined. We have observed the time structures of air Čerenkov light associated with air showers at Mt. Chacaltaya, Bolivia, since 1995. The distribution of a parameter that characterizes the observed time structures is compared with that calculated with a Monte Carlo technique for various chemical compositions. Then the energy dependence of the average logarithmic mass numbers ln A of the primary cosmic rays is determined. The present result at 1015.3 eV is almost consistent with the result of JACEE (A12) and shows gradual increase in ln A as a function of the primary energy (A24 at 1016 eV). Form the comparison of the observational results with several theoretical models, we conclude that the supernova explosion of massive stars is a plausible candidate for the origin of cosmic rays around the “knee” region.  相似文献   

2.
We discuss the concept and the performance of a powerful future ground-based astronomical instrument, 5@5 – a 5 GeV energy threshold stereoscopic array of several large imaging atmospheric Cherenkov telescopes (IACTs) installed at a very high mountain elevation of about 5 km a.s.l. – for the study of the γ-ray sky at energies from approximately 5 to 100 GeV, where the capabilities of both the current space-based and ground-based γ-ray projects are quite limited. With its potential to detect the “standard” EGRET γ-ray sources with spectra extending beyond several GeV in exposure times from 1 to 103 s, such a detector may serve as an ideal “gamma-ray timing explorer” for the study of transient non-thermal phenomena like γ-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of gamma ray bursts, etc. 5@5 also would allow detailed γ-ray spectroscopy of persistent nonthermal sources like pulsars, supernova remnants, plerions, radiogalaxies, and others, with unprecedented for γ-ray astronomy photon statistics. The existing technological achievements in the design and construction of multi(1000)-pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of such a detector in the foreseeable future, although in the longer terms from the point of view of ongoing projects of 100 GeV threshold IACT arrays like HESS which is in the build-up phase. An ideal site for such an instrument could be a high-altitude, 5 km a.s.l. or more, flat area with a linear scale of about 100 m in a very arid mountain region in the Atacama desert of Northern Chile.  相似文献   

3.
The Nasu Observatory, which is composed of eight 20 m elements, was constructed for observing radio transients over a wide field at 1400 MHz. We report on two radio transients detected in consecutive drift scanning observations at declination 32° over a period of about two months. One of the two transients, WJN J1039+3200, appeared at =10h39m40s±10s, δ=32°±0.4° on March 4, 2005, and the other one, WJN J0645+3200, appeared at =06h45m25s±10s, δ=32°±0.4° on March 24, 2005. Both exhibited flux densities in excess of 1 Jy, and the burst durations were up to two days. Since there are few examples of radio transients outside the Galactic plane, these are very important observations. We have previously reported on four radio transients with features that look like the two transients detected this time. Of these six WJN transients in total, five had a duration of up to two days, and one up to three days. Four of the transients were detected at high Galactic latitude of b > 30°. Counterparts of the six WJN transients included X-ray sources in four events and had a consistency of 66%. The consistency of γ-ray, PGC Galaxy, NVSS, and FIRST sources was concentrated at about 50%. We were not able to find any special features in the counterparts. The distribution was verified by making a log N–log S plot using data for the four previously detected transients and the new ones. As a result, the distribution of the radio transients that we observed might have an isotropic distribution not dependent on Galactic longitude and Galactic latitude. The detection probability was calculated based on the assumption of an isotropic distribution. The 2σ upper probability limit for detection of transients of 1000 mJy or more is 0.0049 [deg−2 yr−1]. We cannot yet identify these two radio transients, because their features are different from any radio bursts observed in the past.  相似文献   

4.
Lorenzo Iorio   《New Astronomy》2008,13(7):473-475
In this paper we determine the tidal distortion parameter km of the secondary partner (mass loser) of the semi-detached eclipsing binary system V621 Cen by comparing the phenomenologically determined orbital period Pb=3.683549(11) d to the Keplerian one PKep computed with the values of the relevant system’s parameters determined independently of the third Kepler law itself. Our result is km=-1.5±0.6. Using the periastron precession, as traditionally done with other eclipsing binaries in eccentric orbits, would have not been possible because of the circularity of the V621 Cen path.  相似文献   

5.
C.M. Khalique  P. Ntsime   《New Astronomy》2008,13(7):476-480
We classify the Lane–Emden-type equation xy+ny+xνf(y)=0 with respect to the standard Lagrangian according to the Noether point symmetries it admits. First integrals of the various cases, which admit Noether point symmetries, and reduction to quadratures for these cases are obtained. Six cases result in new solutions.  相似文献   

6.
We present an overview of the low-frequency array (LOFAR) that will open a window on one of the last and most poorly explored regions of the electromagnetic spectrum. LOFAR will be a large (baselines up to 400 km), low-frequency aperture synthesis array with large collecting area ( at ) and high resolution (1.5 at 100 MHz), and will provide sub-mJy sensitivity across much of its operating range. LOFAR will be a powerful instrument for solar system and planetary science applications as reviewed by papers in this monogram. Key astrophysical science drivers include acceleration, turbulence, and propagation in the galactic interstellar medium, exploring the high red-shift universe and transient phenomena, as well as searching for the red-shifted signature of neutral hydrogen from the cosmologically important epoch of re-ionization.  相似文献   

7.
P. Zarka   《Planetary and Space Science》2004,52(15):1455-1467
Jupiter emits intense decameter (DAM) radio waves, detectable from the ground in the range 10–40 MHz. They are produced by energetic electron precipitations in its auroral regions (auroral-DAM), as well as near the magnetic footprints of the Galilean satellite Io (Io-DAM). Radio imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should provide:
(1) an improved mapping of the surface planetary magnetic field, via imaging of instantaneous cyclotron sources of highest frequency;

(2) measurements of the beaming angle of the radiation relative to the local magnetic field, as a function of frequency;

(3) detailed information on the Io–Jupiter electrodynamic interaction, in particular the lead angle between the Io flux tube and the radio emitting field line;

(4) direct information on the origin of the sporadic drifting decameter S-bursts, thought to be electron bunches propagating along magnetic field lines, and possibly revealing electric potential drops along these field lines;

(5) direct observation of DAM emission possibly related to the Ganymede–Jupiter, Europa–Jupiter and/or Callisto–Jupiter interactions, and their energetics;

(6) information on the magnetospheric dynamics, via correlation of radio images with ultraviolet and infrared images of the aurora as well as of the Galilean satellite footprints, and study of their temporal variations;

(7) an improved mapping of the Jovian plasma environment (especially the Io torus) via the propagation effects that it induces on the radio waves propagating through it (Faraday rotation, diffraction fringes, etc.);

(8) possibly on the long-term a better accuracy on the determination of Jupiter's rotation period.

Fast imaging should be permitted by the very high intensity of Jovian decameter bursts. LOFAR's capability to measure the full polarization of the incoming waves will be exploited. The main limitation will come from the maximum angular resolution reachable. We discuss several approaches for bringing it close to the value of 1 at 30–40 MHz, as required for the above studies.

Keywords: Jupiter; Magnetosphere; Radio emission; Radio astronomy; LOFAR; Solar system; Planetology  相似文献   


8.
Jupiter's radio emissions at frequencies below 300 MHz have never been imaged at high spatial resolution. In this paper we discuss the role of LOFAR to image Jupiter's synchrotron radiation at low frequencies to study the low-energy, barely relativistic, electron population in the planet's radiation belts. Radio spectra of Jupiter's synchrotron radiation have revealed significant modifications over time at frequencies between 100 and 1000 MHz, suggestive of processes such as pitch angle scattering by plasma waves, Coulomb scattering and perhaps energy degradation by dust. With LOFAR we may begin investigating the cause of such variability through its imaging capabilities at frequencies 200 MHz at high angular resolution. In particular, quasi-simultaneous observations with LOFAR and higher frequency arrays, such as the Very Large Array (VLA), may provide the necessary data to identify the cause of such variability, which is tightly coupled to the origin and mode of transport (including source/loss terms) of the high-energy electrons in Jupiter's inner radiation belts.  相似文献   

9.
Cosmic-ray induced neutrino backgrounds at the Moon are estimated using a semi-analytic approach. The analytic expressions are derived, flux estimates for and are given, and comparisons with the analogous backgrounds generated in the Earth’s atmosphere are presented. Suppression of the lunar fluxes relative to the terrestrial fluxes is found. At energies >10 GeV, the suppression approaches a maximum of order 10−4. The lower background environment suggests that the Moon may be advantageous for future particle astrophysics endeavors.  相似文献   

10.
If the photon possessed an electric charge or a magnetic moment, light waves propagating through magnetic fields would acquire new quantum mechanical phases. For a charged photon, this is an Aharonov–Bohm phase, and the fact that we can resolve distant galaxies using radio interferometry indicates that this phase must be small. This in turn constrains the photon charge to be smaller that if all photons have the same charge and smaller than if there are both positively and negatively charged photons. The best bound on the magnetic moment comes from the observed absence of wavelength-independent photon birefringence. Birefringence measurements, which compare the relative phases of right- and left-circularly polarized waves, restrict the magnetic moment to be less than . This is just a few orders of magnitude weaker than the experimental bounds on the electron and neutron electric dipole moments.  相似文献   

11.
The photo-coulomb neutrino process has been considered in the electro-weak theory and the influence of this process to the evolution of stars has been outlined. The scattering cross-section of this process is calculated in both low and high energy limit. The neutrino mass has been taken into account in this calculation. In the low-energy limit the neutrino luminosity is computed in the temperature range 108–109 K and is also compared to the previous result obtained according to the current-current coupling theory. The process may be significant for the evolution of stars in the later phases.  相似文献   

12.
Lorenzo Iorio   《New Astronomy》2005,10(8):616-635
In this paper we investigate the opportunities offered by the new Earth gravity models from the dedicated CHAMP and, especially, GRACE missions to the project of measuring the general relativistic Lense–Thirring effect with a new Earth’s artificial satellite. It turns out that it would be possible to abandon the stringent, and expensive, requirements on the orbital geometry of the originally prosed LARES mission (same semimajor axis a = 12,270 km of the existing LAGEOS and inclination i = 70°) by inserting the new spacecraft in a relatively low, and cheaper, orbit (a = 7500–8000 km, i  70°) and suitably combining its node Ω with those of LAGEOS and LAGEOS II in order to cancel out the first two even zonal harmonic coefficients of the multipolar expansion of the terrestrial gravitational potential J2, J4 along with their temporal variations , . The total systematic error due to the mismodelling in the remaining even zonal harmonics would amount to 1% and would be insensitive to departures of the inclination from the originally proposed value of many degrees. No semisecular long-period perturbations would be introduced because the period of the node, which is also the period of the solar K1 tidal perturbation, would amount to 102 days. Since the coefficient of the node of the new satellite would be smaller than 0.1 for such low altitudes, the impact of the non-gravitational perturbations of it on the proposed combination would be negligible. Then, a particular financial and technological effort for suitably building the satellite in order to minimize the non-conservative accelerations would be unnecessary.  相似文献   

13.
We are developing and testing active baluns and electrically short dipoles for possible use as the primary wide band receiving elements in the low-frequency array (LOFAR) for long wavelength radio astronomy. Several dipoles of various designs and dimensions have been built and tested. Their useful range occurs when the dipole arms are approximately to one wavelength long and the feedpoint is less than wavelength above ground. An eight-element NRL LOFAR test array (NLTA) interferometer has been built and fringes have been observed from the brightest celestial sources in the frequency range from 10 to 50 MHz. The antenna temperatures vary from about 10% to 100% of the average brightness temperature of the galactic background. With these parameters it is easy to make the amplifier noise levels low enough that final system temperature is dominated by the galactic background.  相似文献   

14.
Loeb and Waxman have argued that high energy neutrinos from the decay of pions produced in interactions of cosmic rays with interstellar gas in starburst galaxies would be produced with a large enough flux to be observable. Their model is reexamined here and we obtain an upper limit to the diffuse neutrino flux from starburst galaxies. The upper limit obtained here is a factor of 5 lower than the flux which they predict. Our predicted neutrino flux would be below the atmospheric neutrino foreground flux at energies below 300 TeV and therefore would be unobservable. Compared with predicted fluxes from other extragalactic high energy neutrino sources, starburst neutrinos with PeV energies would have a flux considerably below that predicted for AGN models.

We also estimate an upper limit for the diffuse GeV γ-ray flux from starbust galaxies to be of the observed γ-ray background, much less than the component from unresolved blazars and more than an order of magnitude below the estimate of Thompson et al.  相似文献   


15.
We derive fundamental parameters of the embedded cluster DBSB 48 in the southern nebula Hoffleit 18 and the very young open cluster Trumpler 14, by means of deep JHKs infrared photometry. We build colour–magnitude and colour–colour diagrams to derive reddening and age, based on main sequence and pre-main sequence distributions. Radial stellar density profiles are used to study cluster structure and guide photometric diagram extractions. Field-star decontamination is applied to uncover the intrinsic cluster sequences in the diagrams. Ages are inferred from K-excess fractions. A prominent pre-main sequence population is present in DBSB 48, and the K-excess fraction fK = 55 ± 6% gives an age of 1.1 ± 0.5 Myr. A mean reddening of AKs=0.9±0.03 was found, corresponding to AV = 8.2 ± 0.3. The cluster CMD is consistent with the far kinematic distance of 5 kpc for Hoffleit 18. For Trumpler 14 we derived similar parameters as in previous studies in the optical, in particular an age of 1.7 ± 0.7 Myr. The fraction of stars with infrared excess in Trumpler 14 is fK = 28 ± 4%. Despite the young ages, both clusters are described by a King profile with core radii Rcore = 0.46 ± 0.05 pc and Rcore = 0.35 ± 0.04 pc, respectively, for DBSB 48 and Trumpler 14. Such cores are smaller than those of typical open clusters. Small cores are probably related to the cluster formation and/or parent molecular cloud fragmentation. In DBSB 48, the magnitude extent of the upper main sequence is ΔKs ≈ 2 mag, while in Trumpler 14 it is ΔKs ≈ 5 mag, consistent with the estimated ages.  相似文献   

16.
In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated with a supernova explosion, in the absence of an “external trigger”, e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and intensity at the source.  相似文献   

17.
Hans Van de Vyver   《New Astronomy》2006,11(8):577-587
A new embedded pair of explicit exponentially fitted Runge–Kutta–Nyström methods is constructed. The methods integrate exactly systems of differential equations whose solutions are linear combinations of the functions from the set {exp(μt), exp(−μt)} (). The pair has four stages and algebraic orders five and three. An application to some well-known orbital problem shows that the new pair is very competitive when it is compared with high-quality codes proposed in the scientific literature.  相似文献   

18.
With the aim of evaluating the actual possibilities of doing, from the ground, sensitive radio astronomy at decametre wavelengths (particularly below ), an extensive program of radio observations was carried out, in 1999–2002, by using digital spectral and waveform analysers (DSP) of new generation, connected to several of the largest, decametre radio telescopes in the world (i.e., the UTR-2 and URANs arrays in Ukraine, and the Nançay Decametre Array in France).

We report and briefly discuss some new findings, dealing with decametre radiation from Jupiter and the Solar Corona: namely the discovery of new kinds of hyper fine structures in spectrograms of the active Sun, and a new characterisation of Jupiter's “millisecond” radiation, whose waveform samples, with time resolution down to 40 ns, and correlated measurements, by using far distant antennas (3000 km), have been obtained. In addition, scattering effects, caused by the terrestrial ionosphere and the interplanetary medium, could be disentangled through high time resolution and wide-band analyses of solar, planetary and strong galactic radio sources. Consequences for decametre wavelength imaging at high spatial resolution (VLBI) are outlined. Furthermore, in spite of the very unfavourable electromagnetic environment in this frequency range, a substantial increase in the quality of the observations was shown to be provided by using new generation spectrometers, based on sophisticated digital techniques. Indeed, the available, high dynamic range of such devices greatly decreases the effects of artificial and natural radio interference. We give several examples of successful signal detection in the case of much weaker radio sources than Solar System ones, down to the intensity level.

In summary, we conclude that searching for sensitivity improvement at the decametre wavelength is scientifically quite justified, and is now technically feasible, in particular by building giant, phased antenna arrays of much larger collecting area (as in the LOFAR project). In this task, one must be careful of some specifics of this wavelength range—somewhat unusual in “classical” radio astronomy—i.e., very high level and density of radio interference (telecommunications) and the variable terrestrial ionosphere.  相似文献   


19.
Fluid inclusions act as sealed vessels containing information about the fluid environment in which the minerals precipitated, and until decrepitated, the chemical composition of the fluid inside the inclusion stays intact. In many cases fluid inclusions contain trapped hydrocarbons, which may provide useful information in paleontological, organic geochemical and astrobiological research since they act as containers of non-contaminated organic matter with a defined minimum age. Here we present a novel concept for extraction of fluid inclusions in preparation for application to extract single fluid inclusions. The method is based on the illumination of a sample with an ErYAG laser (). The wavelength of the laser is absorbed by water and organic material, and with the minerals encapsulating the inclusions transparent to the wavelength, the fluid will expand and the inclusion will decrepitate. The initial results of our study demonstrate that fluid inclusions can be extracted by the use of an ErYAG laser, and that organic biomarkers may survive the process, readily available for GC–MS analysis.  相似文献   

20.
Measurements of energetic neutral atoms (ENA) generated in the magnetosheath at Mars are reported. These ENAs are the result of charge exchange collisions between solar wind protons and neutral oxygen and hydrogen in the exosphere of Mars. The peak of the observed ENA flux is . For the case studied here, i.e., the passage of Mars Express through the martian magnetosheath around 20:15 UT on 3 May 2004, the measurements agree with an analytical model of the ENA production at the planet. It is possible to find parameter values in the model such that the observed peak in the ENA count rate during the spacecraft passage through the magnetosheath is reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号