首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用黑龙江省1981-2010年的土壤湿度数据,以富锦县、龙江县、双城县、黑河市、海伦县为代表点,分析了黑龙江省东、西、南、北、中各区域封冻前(11月8日)0~30 cm土层土壤湿度的趋势变化和干湿变化,采用线性趋势、5年滑动平均和Mann-Kendall法检验变化趋势,利用Mann-Kendall和Yamamoto法对土壤湿度变化趋势进行突变点检验.结果表明:封冻前0~30 cm土层各地土壤湿度在30年间均有不同程度下降,西部龙江县下降剧烈,中部海伦县较剧烈,北部黑河市和南部双城县次之,上述代表点20 cm土层土壤湿度下降均达到了P<0.05以内的显著水平,东部富锦县下降趋势最弱;经Mann-Kendall法检验,0~30 cm土层龙江县、海伦县土壤湿度出现了下降的突变区域,其余代表点的土壤湿度变化趋势在近几年中逐渐接近或已经超越了显著线;1994年是龙江县10 cm、20 cm土壤湿度下降的突变时期;黑龙江省各地土壤湿度的下降与封冻前一段时期内气温和降水变化密切相关,还与土壤物理性质的恶化等因素有关.  相似文献   

2.
1981—2010年黑龙江省夏季土壤湿度演变特征   总被引:1,自引:0,他引:1  
利用1981—2010年黑龙江省土壤湿度数据,以富锦县、龙江县、双城县、黑河市、海伦县和宁安县为代表站点,分析黑龙江省东、西、南、北部和中部及牡丹江半山区各区域夏季(7—8月)0—50 cm土层土壤湿度的趋势变化和干湿变化,并采用Mann-Kendall法对土壤湿度变化趋势进行显著性和突变点检验。结果表明:夏季0—50 cm土层,黑河市、海伦县和龙江县土壤湿度在30 a间均有不同程度下降,尤其是西部的龙江县土壤湿度下降剧烈;而东部富锦县、南部的双城县和牡丹江半山区的宁安县土壤湿度无明显下降趋势。Mann-Kendall检验结果:近30 a中,黑龙江省夏季0—50 cm土层北部、西部和中部的黑河市、龙江县及海伦县土壤湿度下降趋势显著,并出现了突变区域,表明黑河地区、松嫩平原的西部和北部夏季土壤湿度的干旱化趋势和程度均越来越明显。黑龙江省中西部夏季土壤湿度年际间的下降可能与气候条件及土壤理化性质的改变等因素密切相关。  相似文献   

3.
利用最新的高时空分辨率(1 km、1 h)的中国气象局高分辨率陆面数据同化系统(HRCLDAS-V1.0)大气近地面强迫资料,驱动由NCAR发展的通用陆面模式(CLM),对青藏高原地区2015年1月1日至9月30日的土壤湿度开展了模拟研究。结果表明模拟得到的高时空分辨率(1 km、1 h)土壤湿度能够体现出青藏高原地区从东南向西北逐渐变低的空间分布特征,较好地表现出各层土壤湿度的时间变化特征,6~9月土壤湿度波动较大,1~5月波动较平缓,上层土壤湿度变幅较大,深层变化较平缓。0~5 cm、0~10 cm和10~40 cm深度土壤湿度模拟结果与观测值的相关系数均在0.8以上,其中0~5 cm土层的相关系数达到0.92,各层土壤湿度观测值与模拟值的均方根误差变化则相反,3个土层土壤湿度模拟结果与观测值的偏差均小于0.04 mm3 mm-3,但模式对于研究时段土壤湿度变化的低值有高估现象,且模拟能力随着土层深度的加深而减弱。  相似文献   

4.
2008年的湛江土壤湿度特征   总被引:1,自引:0,他引:1  
对湛江地面气象观测站2008年0~50 cm土壤湿度、降水及蒸发皿蒸发资料进行了分析。结果表明,湛江土壤湿度的垂直分布形态为垂直均匀型;按土壤湿度随时间的变化规律,可将其划分为春季相对稳定期、夏季增墒期和秋季迅速下降期3个时段。对0~10 cm、10~30 cm与30~50 cm土层土壤湿度进行回归分析,表明土壤湿度与降水量、蒸发皿蒸发量存在线性关系,除春季30~50 cm土壤湿度的预报值明显偏低外,其余回归方程的预报结果均较好。同一土壤类型、不同时段,或同一时段、不同的土壤层次,拟合的方程不同,反映出土壤湿度时间和空间分布的复杂性。  相似文献   

5.
利用1982—2020年三江平原19个国家气象观测站土壤湿度及同期降水、气温数据, 基于相关系数和自相关系数统计方法, 分析了黑龙江省三江平原土壤湿度记忆性及与降水、气温之间的关系。结果表明: 春、夏季三江平原土壤湿度记忆时间均在10—40 d, 各层土壤湿度记忆性的空间分布以中间层(10—20 cm)土壤湿度平均记忆时间最长, 呈上下层递减的趋势; 春季三江平原10—20 cm土层土壤湿度的记忆时长平均20 d, 夏季平均17 d; 夏季土壤湿度记忆性强度大于春季, 空间分布以三江平原西部的记忆性较强, 随着土层的增加土壤湿度记忆性有增大的趋势。降水是三江平原土壤湿度主要来源, 受降水和气温协同作用的影响, 夏、秋季土壤湿度与同期降水量、温湿指数均存在显著的正相关关系; 春季土壤湿度与前期秋冬季降水亦呈显著正相关, 与前期温湿指数呈负相关, 前期秋冬季气温的升高会促进土壤的融冻, 从而使当年春季土壤水分增加。  相似文献   

6.
夏季青藏高原不同层次土壤湿度时空变化特征   总被引:1,自引:0,他引:1  
孙夏  范广洲  张永莉  赖欣 《干旱气象》2019,37(2):252-261
基于1950—2009年GLDAS Noah 2.0逐月平均土壤湿度资料,分析了夏季青藏高原各层土壤湿度的时空变化特征。结果表明:(1)夏季青藏高原各层土壤湿度整体上呈自南向北递减的空间分布,但在高原中部地区中层、深层土壤湿度均有一个极值中心。(2)夏季高原中东部地区表层、浅层、中层、深层土壤湿度之间的差值(深层与中层除外)均表现为"上湿下干"的垂直分布,而中部偏西地区各层土壤湿度差值则表现为"下湿上干"的垂直分布。(3)夏季高原各层土壤湿度第一模态均呈现西南—东北反向型分布,且随着深度的增加,零线向东北移。(4)夏季高原主体各层土壤湿度的年际变化特征明显,除深层(呈现不显著增加趋势)外整体均呈现显著下降趋势,前期土壤湿度较高,后期较低。从空间趋势分布来看,除深层土壤湿度在高原中部有增大趋势外,各层土壤湿度变化趋势在高原上均以减小为主。(5)去趋势后,除深层外其他各层土壤湿度最大年际变化幅度在高原中部随着土层的增加而减小,而高原中东部则随土层的增加而增大。  相似文献   

7.
本文利用黑龙江省1984-2007年的气象、土壤湿度和产量资料,采用EOF和SVD等统计方法初步分析了土壤湿度与玉米产量的关系,得出结论:黑龙江省西部地区、中部地区、东部地区玉米单产与土壤湿度年际变化趋势基本一致,黑龙江省大部分地区的玉米产量比较稳定.但各区域受关键时段降水量差异的影响,各区域土壤湿度对玉米产量影响存在差异.西部地区8月上旬-中旬土壤湿度和玉米单产相关最显著,中部地区6月中旬土壤湿度和玉米单产相关最显著,东部地区8月上旬土壤湿度和玉米单产相关最显著.  相似文献   

8.
黑龙江省土壤湿度及其对气温和降水的敏感性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
气温和降水量变化是影响土壤湿度变化的主要原因,研究土壤湿度对气温和降水的敏感性对区域农业生产、生态环境治理和经济可持续发展有重要意义。采用1984-2007年黑龙江省73个气象观测站的气温、降水数据和13个土壤湿度观测站土壤观测数据,利用EOF、相关分析等数理分析方法,对黑龙江省土壤湿度与气温、降水量之间的关系进行了研究。结果表明:1984-2007年黑龙江省土壤湿度变化在不同区域存在差异:除三江平原中西部地区外,大部分农区土壤湿度变化趋势一致,20世纪90年代中期以前基本偏湿,而90年代中期以后则为偏干,2001年偏干严重。土壤湿度对气候变化响应的敏感性也不同,松嫩平原(西南部除外)是土壤湿度对气温和降水变化敏感区域;松嫩平原西南部对气温敏感;伊春南部地区-哈尔滨东部-三江平原西部为降水敏感区;逊克、伊春北部、牡丹江和三江平原东部土壤湿度对气温和降水均不敏感。  相似文献   

9.
雨后麦田土壤湿度变化的诊断分析   总被引:2,自引:0,他引:2  
任鹤麒  金龙 《气象科学》1996,16(3):264-271
通过分析研究冬小麦生育期,影响雨后麦田土壤湿度变化的主要因子,建立了雨后小水分渗透深度及不同土层的土壤湿度变化诊断模式。利用1991-1994年冬小麦不同时段的实测资料进行的对比分析表明,各模式的计算结果是较为满意的。  相似文献   

10.
利用线性趋势估计、Mann—Kendall检验等方法对1981—2010年郑州市夏玉米生育期内土壤湿度的年际及垂直变化特征进行了分析,结果表明:近30a来郑州地区夏玉米生长季土壤水分呈显著的下降趋势,0—40cm、40—100am下降速率分别为-3.34%/10a和-5.94%/10a;0—40em在1986年形成一个突变点,40一100CIYI在1998年形成一个突变点,突变点后土壤湿度下降明显;夏玉米生育期内,土壤湿度随生育进程的推进不断增加,到乳熟期后维持在较高水平,同一生育阶段由浅及深各层土壤湿度变异系数逐步减小;各层次土壤湿度的垂直分布基本呈现上干下湿的状态,各生育阶段各层土壤湿度多表现为乳熟期的〉抽雄期的〉拔节期的〉出苗期的。  相似文献   

11.
用土钻法测定土壤湿度的工作相当繁重,所以要找出一种简便的测定土壤湿度的新方法。(1970)等为了减轻测定土壤湿度的繁重工作曾作过一些研究,其中包括灌溉地土壤湿度的测定问题。(1970)等曾提出,根据暗栗钙土30cm和40cm深度的平均湿度来计算0—70cm和0—100cm土层的湿度,并认为在这些土层的湿度间存在着线性关系。  相似文献   

12.
冬小麦土壤深松保墒增产效应试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用土壤深松 45cm、30 cm处理打破犁底层 ,1 996~ 1 998年连续进行 2个年度的冬小麦保墒、增产效应田间试验 .试验结果表明 :土壤深松处理后可减少冬小麦全生育期 0~ 1 0 0 cm的作物耗水量 ,促进根系对 1 0 0~ 2 0 0 cm土层土壤水分的利用 ,提高冬小麦的产量耗水比 .土壤深松处理能明显增加 0~ 30 cm土层的土壤湿度和含水量 ,降低 0~ 50 cm土层的土壤容重 .有利于冬小麦根系、茎、叶的生长发育和总生物量的累积 .土壤深松 45cm处理 2年平均冬小麦增产 7.0 % ,土壤深松 30 cm处理第一年增产 7.7% .冬小麦土壤深松保墒增产效应的适宜深松深度为 30 cm.  相似文献   

13.
为研究在同一气候背景下气象观测场与农田两地土壤湿度之间的互可代替使用关系,对2006—2008年在宿州市气象观测场和农田内开展的3年土壤湿度平行对比监测试验所获取的每旬一次两地土壤湿度监测数据,采用对比差值率、相关性分析等数理统计手段,研究分析了两地不同季节不同深度的土壤湿度之间的关系。结果表明:春、夏、秋、冬4季气象观测场地与农田的土壤湿度具有一致性,均为统计正相关。春季,取土日前有降水时,气象观测场地与农田的土壤湿度的差异高于取土日前无降水时的差异。夏季,气象观测场地与农田0~30 cm土层之间的  相似文献   

14.
通过对铁卜加牧业气象试验站1987~1996年土壤湿度资料的分析,对土壤湿度随深度、时间的变化及各时段土壤湿度与降水的关系有了初步结论,并研制了春季解冻时和解冻到5月下旬各层次土壤湿度的长期预报方法。  相似文献   

15.
CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究   总被引:7,自引:2,他引:5  
本文利用普林斯顿大学全球大气强迫场资料,驱动公用陆面过程模式(Community Land Model version 4.0,CLM4.0)模拟了中国区域1961~2010年土壤湿度的时空变化。将模拟结果与观测结果、美国国家环境预报中心再分析数据(National Centers for Environmental Prediction Reanalysis,NCEP)和高级微波扫描辐射计(Advanced Microwave Scanning Radiometer-EOS,AMSR-E)反演的土壤湿度进行了对比分析,结果表明CLM4.0模拟结果可以反映出中国区域观测土壤湿度的空间分布和时空变化特征,但东北、江淮和河套三个地区模拟值相对于观测值在各层次均系统性偏大。模拟与NCEP再分析土壤湿度的空间分布基本一致,与AMSR-E的反演值在35°N以北的分布也基本一致;从1961~2010年土壤湿度模拟结果分析得出,各层土壤湿度空间分布从西北向东南增加。低值区主要分布在新疆、青海、甘肃和内蒙古西部地区。东北平原、江淮地区和长江流域为高值区。土壤湿度数值总体上从浅层向深层增加。不同深度土壤湿度变化趋势基本相同。除新疆西部和东北部分地区外,土壤湿度在35°N以北以减少趋势为主,30°N以南的长江流域、华南及西南地区以增加为主。在全球气候变暖的背景下,CLM4.0模拟的夏季土壤湿度在不同程度上响应了降水的变化。中国典型干旱区和半干旱区土壤湿度减小,湿润区增加。其中湿润区土壤湿度对降水的响应最为显著,其次是半干旱区和干旱区。  相似文献   

16.
基于组网观测的那曲土壤湿度不同时间尺度的变化特征   总被引:2,自引:0,他引:2  
李博  张淼  唐世浩  董立新 《气象学报》2018,76(6):1040-1052
利用第三次青藏高原大气科学试验的土壤湿度观测数据,分析了那曲多空间尺度组网观测的28个站2、5、10、20和30 cm 5个不同深度土壤湿度的季节变化和日变化特征,并对比讨论了土壤湿度站点间的差异。分析表明,各层土壤湿度均存在显著的季节变化。冬春季节,20 cm以上土壤湿度随深度变浅而减小。夏秋季节土壤湿度随深度增加而减小,并分别在7月上、中旬和9月出现两个峰值。10月以后进入土壤湿度衰减期。土壤温度和土壤湿度存在协同变化关系。在一定的温度范围内,土壤发生冻结-融化过程,引起土壤湿度变化。在太阳辐射加热下,土壤表层水分蒸发,进而影响土壤温度。不同观测站间土壤湿度差异较大,夏秋季离散性大于冬春季。不同季节土壤湿度的日变化存在差异。春季10 cm以上土壤湿度日变化明显,08-10时(北京时)达到最低,19-20时达到最高。夏季土壤湿度日变化较为平缓。秋季2 cm深度土壤湿度日变化明显。线性拟合结果表明,1、4、10月土壤湿度和土壤温度为正相关关系。但是在夏季,土壤湿度与土壤温度为负相关。站点间土壤湿度变化的离散性表明,多测站才能全面体现青藏高原某区域的陆面状态。文中结果为青藏高原地区土壤湿度卫星参数验证和数值模式参数化提供了多角度的观测依据。   相似文献   

17.
利用陕西省咸阳国家一级农业气象试验站1992—2021年的土壤湿度资料,采用线性评估、回归分析等方法分析了咸阳30 a来土壤湿度在自然状态下的变化规律。结果表明:三个层次土壤湿度均呈现明显下降趋势,0~10 cm年平均土壤湿度的变化趋势率为-0.99%/10 a, 20~30 cm为-1.03%/10 a, 40~50 cm为-0.87%/10 a;各季节三个层次土壤湿度也呈下降趋势,其中春季降幅最大,其次为冬季、夏季,秋季降幅最小。0 cm土壤解冻有推迟趋势,平均变化趋势率-2.92 d/10 a; 0 cm土壤冻结有提早趋势,平均变化趋势率为-1.81 d/10 a。土壤湿度影响因子中,气压、降水量与土壤湿度成正相关,地温、气温与土壤湿度成负相关;某些年份在降水量增加的前提下,由于地面温度和地温增加的影响,也会造成土壤湿度下降。  相似文献   

18.
中国不同气候区土壤湿度特征及其气候响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得中国不同气候区各层深度土壤湿度变化特征及其对气候变化的响应,利用中国区域台站观测土壤湿度资料、降水及气温资料,采用趋势、相关性分析及突变检验等方法,讨论了东北、河套、江淮区域1981~1999年不同深度土壤湿度变化特征及其对气温、降水的响应。结果表明:东北、江淮地区为土壤湿度高值区,河套地区为土壤湿度低值区,土壤湿度由浅层至深层呈上升趋势;东北、河套地区降水和土壤湿度变化呈正相关,江淮地区降水和土壤湿度呈负相关;东北、河套地区气温和土壤湿度变化呈负相关,江淮地区气温与土壤湿度呈正相关关系。土壤湿度对降水的响应比对气温变化的响应更加显著。   相似文献   

19.
本文利用1981~2016年的CRUNCEP资料(0.5°×0.5°)作为大气驱动数据,驱动CLM4.5(Community Land Model version 4.5)模式模拟了青藏高原地区1981~2016 年的土壤湿度时空变化。将模拟数据与台站观测资料、再分析资料(ERA-Interim和GLDAS-CLM)和微波遥感FY-3B/MWRI土壤湿度资料对比验证,表明了CLM4.5模拟资料可以合理再现青藏高原地区土壤湿度的空间分布和长期变化趋势。而且基于多种卫星遥感资料建立的较高分辨率(0.1°×0.1°)的青藏高原地表数据更加细致地刻画了土壤湿度的空间变化。对比结果表明:CLM4.5模拟土壤湿度与各个台站观测的时空变化一致,各层土壤湿度的模拟和观测均显著相关,且对浅层的模拟优于深层,但模拟结果比台站观测系统性偏大。模拟与再分析资料和微波遥感资料土壤湿度的空间分布具有一致性,均表现为从青藏高原的西北部向东南部逐渐增加的分布特点,三江源湿地和高原东南部为土壤湿度的高值区,柴达木盆地和新疆塔里木盆地的沙漠地区为低值区,土壤湿度由浅层向深层增加。土壤湿度的长期变化趋势基本表现为“变干—变湿”相间的带状分布,不同层次的土壤湿度变化趋势基本一致。模拟资料也合理地再现了夏季土壤湿度逐月的变化:高原西南地区的土壤湿度明显大范围增加,北部的柴达木盆地的干旱范围也明显的向北收缩,高原南部外围土壤湿度也明显增加,CLM4.5模拟土壤湿度比再分析资料和微波遥感资料更加细致地描述了夏季逐月土壤湿度空间分布及其变化特征。  相似文献   

20.
本研究利用欧洲中心ERA5再分析资料的逐日土壤湿度(土壤体积含水量)、降水量、位势高度场以及风场数据,重点分析了1981~2020年高原春季浅层(0~7 cm)土壤湿度的时空变化特征,并探讨了青藏高原土壤湿度与高原季风的关系。青藏高原春季土壤湿度西北偏干,东南部相对偏湿的分布特征。对高原春季土壤湿度进行经验正交函数(EOF)分析后发现,其第一模态呈中部与东、西部反向变化特征,该模态存在准3年(2~4年)的振荡周期,这一周期特征在2000~2010年表现的更为显著;第二模态呈南北反向分布,较好地表征高原地区气候带与下垫面覆盖状况。研究发现,高原夏季风与高原春季土壤湿度变化之间存在密切的隔季相关,高原夏季风异常变化是翌年春季土壤湿度变化的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号