首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Potential Soil C Sequestration on U.S. Agricultural Soils   总被引:1,自引:0,他引:1  
Soil carbon sequestration has been suggested as a means to help mitigate atmospheric CO2 increases, however there is limited knowledge aboutthe magnitude of the mitigation potential. Field studies across the U.S. provide information on soil C stock changes that result from changes in agricultural management. However, data from such studies are not readily extrapolated to changes at a national scale because soils, climate, and management regimes vary locally and regionally. We used a modified version of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory method, together with the National Resources Inventory (NRI) and other data, to estimate agricultural soil C sequestration potential in the conterminous U.S. The IPCC method estimates soil C stock changes associated with changes in land use and/or land management practices. In the U.S., the NRI provides a detailed record of land use and management activities on agricultural land that can be used to implement the IPCC method. We analyzed potential soil C storage from increased adoption of no-till, decreased fallow operations, conversion of highly erodible land to grassland, and increased use of cover crops in annual cropping systems. The results represent potentials that do not explicitly consider the economic feasibility of proposed agricultural production changes, but provide an indication of the biophysical potential of soil C sequestration as a guide to policy makers. Our analysis suggests that U.S. cropland soils have the potential to increase sequestered soil C by an additional 60–70 Tg (1012g) C yr– 1, over present rates of 17 Tg C yr–1(estimated using the IPCC method), with widespread adoption of soil C sequestering management practices. Adoption of no-till on all currently annually cropped area (129Mha) would increase soil C sequestration by 47 Tg C yr–1. Alternatively, use of no-till on 50% of annual cropland, with reduced tillage practices on the other 50%, would sequester less – about37 Tg C yr–1. Elimination of summer fallow practices and conversionof highly erodible cropland to perennial grass cover could sequester around 20 and 28Tg C yr–1, respectively. The soil C sequestration potentialfrom including a winter cover crop on annual cropping systems was estimated at 40Tg C yr–1. All rates were estimated for a fifteen-yearprojection period, and annual rates of soil C accumulations would be expected to decrease substantially over longer time periods. The total sequestration potential we have estimated for the projection period (83 Tg C yr–1) represents about 5% of 1999total U.S. CO2 emissions or nearly double estimated CO2 emissionsfrom agricultural production (43 Tg C yr–1). For purposes ofstabilizing or reducing CO2 emissions, e.g., by 7% of 1990 levels asoriginally called for in the Kyoto Protocol, total potential soil C sequestration would represent 15% of that reduction level from projected 2008 emissions(2008 total greenhouse gas emissions less 93% of 1990 greenhouse gasemissions). Thus, our analysis suggests that agricultural soil C sequestration could play a meaningful, but not predominant, role in helping mitigate greenhouse gas increases.  相似文献   

2.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

3.
Climate sensitivity estimated from ensemble simulations of glacial climate   总被引:1,自引:0,他引:1  
The concentration of greenhouse gases (GHGs) in the atmosphere continues to rise, hence estimating the climate system’s sensitivity to changes in GHG concentration is of vital importance. Uncertainty in climate sensitivity is a main source of uncertainty in projections of future climate change. Here we present a new approach for constraining this key uncertainty by combining ensemble simulations of the last glacial maximum (LGM) with paleo-data. For this purpose we used a climate model of intermediate complexity to perform a large set of equilibrium runs for (1) pre-industrial boundary conditions, (2) doubled CO2 concentrations, and (3) a complete set of glacial forcings (including dust and vegetation changes). Using proxy-data from the LGM at low and high latitudes we constrain the set of realistic model versions and thus climate sensitivity. We show that irrespective of uncertainties in model parameters and feedback strengths, in our model a close link exists between the simulated warming due to a doubling of CO2, and the cooling obtained for the LGM. Our results agree with recent studies that annual mean data-constraints from present day climate prove to not rule out climate sensitivities above the widely assumed sensitivity range of 1.5–4.5°C (Houghton et al. 2001). Based on our inferred close relationship between past and future temperature evolution, our study suggests that paleo-climatic data can help to reduce uncertainty in future climate projections. Our inferred uncertainty range for climate sensitivity, constrained by paleo-data, is 1.2–4.3°C and thus almost identical to the IPCC estimate. When additionally accounting for potential structural uncertainties inferred from other models the upper limit increases by about 1°C.  相似文献   

4.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO x . This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO x emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO x and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO x emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations.  相似文献   

5.
The annual trace gas emissions from a West African rural region were calculated using direct observations of gas emissions and burning practices, and the findings compared to the guidelines published by the IPCC. This local-scale study was conducted around the village of Dalun in the Northern Region of Ghana, near the regional capital of Tamale. Two types of fires were found in the region – agricultural fires andwildfires. Agricultural fires are intentionally set in order to remove shrub and crop residues; wildfires are mostly ignited by herders to remove inedible grasses and to promote the growth of fresh grass. An agricultural fire is ignited with a fire front moving against the wind (backfire), whereas a wildfire moves with the wind (headfire). Gas emissions (CO2, CO and NO) weremeasured by burning eight experimental plots, simulating both headfires and backfires. A common method of evaluating burning conditions is to calculate modified combustion efficiency (MCE), which expresses the percentage of the trace gases released as CO2. Modified combustion efficiency was95% in the wildfires burned as headfires, but only 90% in the backfires.The burned area in the study region was determined by classifying a SPOT HRV satellite image taken about two months into the dry season. Fires were classified as either old burned areas or new burned areas as determined by the gradient in moisture content in the vegetation from the onset of the dry season. Classified burned areas were subsequently divided into two classes depending on whether the location was in the cultivated area or in the rangeland area, this sub-classification thus indicating whether the fire had been burned as a backfire or headfire. Findings showed that the burned area was 48% of the total region, and that the ratio of lowland wildfiresto agricultural fires was 3:1. The net trace gas release from the classified vegetation burnings were extrapolated to 26–46×108 gCO2, 78–302×106 g CO,17–156×105 g CH4,16–168×105 g NMHC and 11–72×103 NOx. Calculation of the emissionsusing proposed IPCC default values on burned area and average biomass resulted in a net emission 5 to 10 times higher than the measured emission values. It was found that the main reason for this discrepancy was not the emission factorsused by the IPCC, but an exaggerated fuel load estimate.  相似文献   

6.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   

7.
The concept of global warming potential was developed as a relative measure of the potential effects on climate of a greenhouse gas as compared to CO2. In this paper a series of sensitivity studies examines several uncertainties in determination of Global Warming Potentials (GWPs). For example, the original evaluation of GWPs for the Intergovernmental Panel on Climate Change (IPCC, 1990) did not attempt to account for the possible sinks of carbon dioxide (CO2) that could balance the carbon cycle and produce atmospheric concentrations of CO2 that match observations. In this study, a balanced carbon cycle model is applied in calculation of the radiative forcing from CO2. Use of the balanced model produces up to 21% enhancement of the GWPs for most trace gases compared with the IPCC (1990) values for time horizons up to 100 years, but a decreasing enhancement with longer time horizons. Uncertainty limits of the fertilization feedback parameter contribute a 20% range in GWP values. Another systematic uncertainty in GWPs is the assumption of an equilibrium atmosphere (one in which the concentration of trace gases remains constant) versus a disequilibrium atmosphere (one in which the concentration of trace gases varies with time). The latter gives GWPs that are 19 to 32% greater than the former for a 100 year time horizons, depending upon the carbon dioxide emission scenario chosen. Five scenarios are employed: constant-concentration, constant-emission past 1990 and the three IPCC (1992) emission scenarios. For the analysis of uncertainties in atmospheric lifetime (τ) the GWP changes in direct proportion toτ for short-lived gases, but to a lesser extent for gases withτ greater than the time horizontal for the GWP calculation.  相似文献   

8.
Summary The problem of global climate change forced by anthropogenic emissions of greenhouse gases (GHG) and sulfur components (SU) has to be addressed by different methods, including the consideration of concurrent forcing mechanisms and the analysis of observations. This is due to the shortcoming and uncertainties of all methods, even in case of the most sophisticated ones. In respect to the global mean surface air temperature, we compare the results from multiple observational statistical models such as multiple regression (MRM) and neural networks (NNM) with those of energy balance (EBM) and general circulation models (GCM) where, in the latter case, we refer to the recent IPCC Report. Our statistical assessments, based on the 1866–1994 period, lead to a GHG signal of 0.8–1.3 K and a combined GHG-SU signal of 0.5–0.8 K detectable in observations. This is close to GCM simulations and clearly larger than the volcanic, solar and ENSO (El Niño/southern oscillation) signals also considered.With 2 Figures  相似文献   

9.
The results from a one-dimensional photochemical model of the troposphere representative of summertime conditions at Northern Hemisphere mid-latitudes are presented. A parameterization of mixing processes within the planetary boundary layer (PBL) has been incorporated into the model for both the daytime convective PBL and the formation of the nocturnal PBL. One result of the parameterized PBL is that the concentrations of some trace species in the free troposphere are 20–30% higher than when mixing processes are described by a vertical eddy diffusion coefficient which is held constant with respect to height and time.The calculations indicate that the lifetime of the oxides of nitrogen (NO x =NO+NO2) against photochemical conversion to nitric acid (HNO3) during summertime conditions is on the order of 6 h. This lifetime is short enough to deplete most of the NO x in the PBL, resulting in the finding that other reactive nitrogen species (HNO3 and peroxyacetyl nitrate) are more abundant than NO x throughout the free troposphere, even though NO x is the most abundant reactive nitrogen species at the surface. The effects of the inclusion of anthropogenic nonmethane hydrocarbon (NMHC) chemistry are also discussed. The inclusion of NMHC chemistry has a pronounced effect on the photochemistry of tropospheric oxone and increases thein situ column production by more than 30%.  相似文献   

10.
A global data set on the geographic distribution and seasonality of freshwater wetlands and rice paddies has been compiled, comprising information at a spatial resolution of 2.5° by latitude and 5° by longitude. Global coverage of these wetlands total 5.7×106 km2 and 1.3×106 km2, respectively. Natural wetlands have been grouped into six categories following common terminology, i.e. bog, fen, swamp, marsh, floodplain, and shallow lake. Net primary productivity (NPP) of natural wetlands is estimated to be in the range of 4–9×1015 g dry matter per year. Rice paddies have an NPP of about 1.4×1015 g y–1. Extrapolation of measured CH4 emissions in individual ecosystems lead to global methane emission estimates of 40–160 Teragram (1 Tg=1012 g) from natural wetlands and 60–140 Tg from rice paddies per year. The mean emission of 170–200 Tg may come in about equal proportions from natural wetlands and paddies. Major source regions are located in the subtropics between 20 and 30° N, the tropics between 0 and 10° S, and the temperate-boreal region between 50 and 70° N. Emissions are highly seasonal, maximizing during summer in both hemispheres. The wide range of possible CH4 emissions shows the large uncertainties associated with the extrapolation of measured flux rates to global scale. More investigations into ecophysiological principals of methane emissions is warranted to arrive at better source estimates.  相似文献   

11.
Uncertainties in climate stabilization   总被引:1,自引:1,他引:0  
The atmospheric composition, temperature and sea level implications out to 2300 of new reference and cost-optimized stabilization emissions scenarios produced using three different Integrated Assessment (IA) models are described and assessed. Stabilization is defined in terms of radiative forcing targets for the sum of gases potentially controlled under the Kyoto Protocol. For the most stringent stabilization case (“Level 1” with CO2 concentration stabilizing at about 450 ppm), peak CO2 emissions occur close to today, implying (in the absence of a substantial CO2 concentration overshoot) a need for immediate CO2 emissions abatement if we wish to stabilize at this level. In the extended reference case, CO2 stabilizes at about 1,000 ppm in 2200—but even to achieve this target requires large and rapid CO2 emissions reductions over the twenty-second century. Future temperature changes for the Level 1 stabilization case differ noticeably between the IA models even when a common set of climate model parameters is used (largely a result of different assumptions for non-Kyoto gases). For the Level 1 stabilization case, there is a probability of approximately 50% that warming from pre-industrial times will be less than (or more than) 2°C. For one of the IA models, warming in the Level 1 case is actually greater out to 2040 than in the reference case due to the effect of decreasing SO2 emissions that occur as a side effect of the policy-driven reduction in CO2 emissions. This effect is less noticeable for the other stabilization cases, but still leads to policies having virtually no effect on global-mean temperatures out to around 2060. Sea level rise uncertainties are very large. For example, for the Level 1 stabilization case, increases range from 8 to 120 cm for changes over 2000 to 2300.  相似文献   

12.
Ocean iron fertilization has been proposed as a method to mitigate anthropogenic climate change, and there is continued commercial interest in using iron fertilization to generate carbon credits. It has been further speculated that ocean iron fertilization could help mitigate ocean acidification. Here, using a global ocean carbon cycle model, we performed idealized ocean iron fertilization simulations to place an upper bound on the effect of iron fertilization on atmospheric CO2 and ocean acidification. Under the IPCC A2 CO2 emission scenario, at year 2100 the model simulates an atmospheric CO2 concentration of 965 ppm with the mean surface ocean pH 0.44 units less than its pre-industrial value of 8.18. A globally sustained ocean iron fertilization could not diminish CO2 concentrations below 833 ppm or reduce the mean surface ocean pH change to less than 0.38 units. This maximum of 0.06 unit mitigation in surface pH change by the end of this century is achieved at the cost of storing more anthropogenic CO2 in the ocean interior, furthering acidifying the deep-ocean. If the amount of net carbon storage in the deep ocean by iron fertilization produces an equivalent amount of emission credits, ocean iron fertilization further acidifies the deep ocean without conferring any chemical benefit to the surface ocean.  相似文献   

13.
Within the framework of IDAF (IGAC DEBITS AFRICA: International GlobalAtmospheric Chemistry/DEposition of Biogeochemically Important TraceSpecies/Africa) network, data analysis is realised on precipitation chemical composition collected in Zoétélé, in Southern Cameroon. This station, located atabout 200 km from the Atlantic Ocean, is representative of a so-called `Evergreen Equatorial Forest' ecosystem. An automatic wet-only precipitation collector was operated at the station from 1996 to 2000. The rainfall regime, associated with eastward advection of moist and cool monsoon air masses, amounts to an average of 1700 mm/year. Inorganic and organic content of the precipitation were determined by IC in 234 rainfall events, representing a total 4,583 mm of rainfall from an overall of 7,100 mm.The mean annual precipitation chemistry and wet deposition fluxes characteristic of an African equatorial forest are quantified. Typical atmospheric gases and particles sources influence the precipitation chemical content and the associated deposition of chemical species. Indeed, hydrogen concentration is the highest (12.0 eq.L–1) of the IDAF measurements, leading to acid rains with a low mean pH 4.92. The mineral species are dominated by nitrogenous compounds (NH4 +:10.5 and NO3 : 6.9 eq.L–1), Ca2+ (8.9 eq.L–1) and SO4 2 – 5.1 eq.L–1. Relationship between Ca2 + and SO4 2 – indicated aterrigeneous particulate source and an additional SO4 2 – contributionprobably due to swamps and volcano emissions. Na+ and Clconcentrations, around 4.0 eq.L–1, seem very low for this site,accounting for the marine source. Besides, strong correlations between NH4 +/K+/Cl indicate the biomass burning originof these species. Accordingly, precipitation chemistry in Zoétéléis influenced by three major sources: biogenic emissions from soil and forest ecosystems, biomass burning from savannah, and terrigenous signature from particles emissions of arid zones; and three minor sources: marine, volcano and anthropogenic. In spite of the relatively low concentration of all these elements, the wet deposition is quite significant due to the high precipitation levels, with for example a nitrogenous compounds deposition of 34 mmol.m–2.yr–1.  相似文献   

14.
A global three-dimensional model of the tropospheric sulfur cycle   总被引:9,自引:0,他引:9  
The tropospheric part of the atmospheric sulfur cycle has been simulated in a global three-dimensional model. The model treats the emission, transport, chemistry, and removal processes for three sulfur components; DMS (dimethyl sulfide), SO2 and SO4 2– (sulfate). These processes are resolved using an Eulerian transport model, the MOGUNTIA model, with a horizontal resolution of 10° longitude by 10° latitude and with 10 layers in the vertical between the surface and 100 hPa. Advection takes place by climatological monthly mean winds. Transport processes occurring on smaller space and time scales are parameterized as eddy diffusion except for transport in deep convective clouds which is treated separately. The simulations are broadly consistent with observations of concentrations in air and precipitation in and over polluted regions in Europe and North America. Oxidation of DMS by OH radicals together with a global emission of 16 Tg DMS-S yr–1 from the oceans result in DMS concentrations consistent with observations in the marine boundary layer. The average turn-over times were estimated to be 3, 1.2–1.8, and 3.2–6.1 days for DMS, SO2, and SO4 2– respectively.  相似文献   

15.
Deforestation in Brazilian Amazonia is a significant source of greenhouse gases today and, with almost 90% of the originally forested area still uncleared, is a very large potential source of future emissions. The 1990 rate of loss of forest (13.8 × 103 km2/year) and cerrado savanna (approximately 5 × 103 km2/year) was responsible for releasing approximately 261 × 106 metric tons of carbon (106 t C) in the form of CO2, or 274–285 × 106 t of CO2-equivalent C considering IPCC 1994 global warming potentials for trace gases over a 100-year horizon. These calculations consider conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest, and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as net committed emissions, or the gases released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. For low and high trace gas scenarios, respectively, 1990 clearing produced net committed emissions (in 106 t of gas) of 957–958 for CO2, 1.10–1.42 for CH4, 28–35 for CO, 0.06–0.16 for N2O, 0.74–0.74 for NOx and 0.58–1.16 for non-methane hydrocarbons.  相似文献   

16.
The changing chemical composition of cloud water and precipitation in the Western Sudety Mountains are discussed against the background of air-pollution changes in the Black Triangle since the 1980s until September 2004. A marked reduction of sulphur dioxide emissions between the early 1990's and the present (from almost 2 million tons to around 0.2 million tons) has been observed, with a substantial decline of sulphate and hydrogen concentration in cloud water (SO42− from more than 200 to around 70 μmol l− 1; H+ from 150 to 50 μmol l− 1) and precipitation (SO42− from around 80 to 20–30 μmol l− 1; H+ from around 60 to 10–15 μmol l− 1) samples. At some sites, where fog/cloud becomes the major source of pollutants, deposition hot spots are still observed where, for example, nitrogen deposition can exceed 20 times the relevant critical load. The results show that monitoring of cloud water chemistry can be a sensitive indicator of pollutant emissions.  相似文献   

17.
The impact of natural and anthropogenicnon-methane hydrocarbons (NMHC) on troposphericchemistry is investigated with the global,three-dimensional chemistry-transport model MOGUNTIA.This meteorologically simplified model allows theinclusion of a rather detailed scheme to describeNMHC oxidation chemistry. Comparing model resultscalculated with and without NMHC oxidation chemistryindicates that NMHC oxidation adds 40–60% to surfacecarbon monoxide (CO) levels over the continents andslightly less over the oceans. Free tropospheric COlevels increase by 30–60%. The overall yield of COfrom the NMHC mixture considered is calculated to beabout 0.4 CO per C atom. Organic nitrate formationduring NMHC oxidation, and their transport anddecomposition affect the global distribution of NO x and thereby O3 production. The impact of theshort-lived NMHC extends over the entire tropospheredue to the formation of longer-lived intermediateslike CO, and various carbonyl and carboxyl compounds.NMHC oxidation almost doubles the net photochemicalproduction of O3 in the troposphere and leads to20–80% higher O3 concentration inNO x -rich boundarylayers, with highest increases over and downwind ofthe industrial and biomass burning regions. Anincrease by 20–30% is calculated for the remotemarine atmosphere. At higher altitudes, smaller, butstill significant increases, in O3 concentrationsbetween 10 and 60% are calculated, maximizing in thetropics. NO from lightning also enhances the netchemical production of O3 by about 30%, leading to asimilar increase in the global mean OH radicalconcentration. NMHC oxidation decreases the OH radicalconcentrations in the continental boundary layer withlarge NMHC emissions by up to 20–60%. In the marineboundary layer (MBL) OH levels can increase in someregions by 10–20% depending on season and NO x levels.However, in most of the MBL OH will decrease by10–20% due to the increase in CO levels by NMHCoxidation chemistry. The large decreases especiallyover the continents strongly reduce the markedcontrasts in OHconcentrations between land and oceanwhich are calculated when only the backgroundchemistry is considered. In the middle troposphere, OHconcentrations are reduced by about 15%, although dueto the growth in CO. The overall effect of thesechanges on the tropospheric lifetime of CH4 is a 15%increase from 6.5 to 7.4 years. Biogenic hydrocarbonsdominate the impact of NMHC on global troposphericchemistry. Convection of hydrocarbon oxidationproducts: hydrogen peroxides and carbonyl compounds,especially acetone, is the main source of HO x in theupper troposphere. Convective transport and additionof NO from lightning are important for the O3 budgetin the free troposphere.  相似文献   

18.
During the negotiations on the Kyoto Protocol, Brazil proposed a methodology to link the relative contribution of Annex I Parties to emission reductions with the relative contributions of Parties to the global-mean temperature increase. The proposal was not adopted during the negotiations but referred to the Subsidiary Body for Scientific and Technological Advice for consideration of its methodological aspects. In this context we analyze the impact of model uncertainties and methodological choices on the regionally attributed global-mean temperature increase. A climate assessment model has been developed to calculate changes in greenhouse gas concentrations, global-mean temperature and sea-level rise attributable to individual regions. The analysis shows the impact of the different choices in methodological aspects to be as important as the impact of model uncertainties on a region's contribution to present and future global temperature increases. Choices may be the inclusion of the anthropogenic non-CO2 greenhouse gas emissions and/or theCO2 emissions associated with land-use changes. When responsibility to global temperature change is attributed to all emitting Parties, the impacts of modeling uncertainties and methodological choices on contributions of individual Parties are considerable. However, if relative contributions are calculated only within the group of Annex I countries, the results are less sensitive to the uncertainty aspects considered here.  相似文献   

19.
The Anthropogenic Greenhouse Era Began Thousands of Years Ago   总被引:2,自引:0,他引:2  
The anthropogenic era is generally thought to have begun 150 to 200 years ago, when the industrial revolution began producing CO2 andCH4 at rates sufficient to alter their compositions in the atmosphere. A different hypothesis is posed here: anthropogenic emissions of these gases first altered atmospheric concentrations thousands of years ago. This hypothesis is based on three arguments. (1) Cyclic variations in CO2 andCH4 driven by Earth-orbital changes during the last 350,000 years predict decreases throughout the Holocene, but the CO2 trend began ananomalous increase 8000 years ago, and the CH4 trend did so 5000 years ago.(2) Published explanations for these mid- to late-Holocene gas increases basedon natural forcing can be rejected based on paleoclimatic evidence. (3) A wide array of archeological, cultural, historical and geologic evidence points to viable explanations tied to anthropogenic changes resulting from early agriculture in Eurasia, including the start of forest clearance by 8000 years ago and of rice irrigation by 5000 years ago. In recent millennia, the estimated warming caused by these early gas emissions reached a global-mean value of 0.8 °C and roughly 2 °C at high latitudes, large enough to have stopped a glaciation of northeastern Canada predicted by two kinds of climatic models. CO2 oscillations of 10 ppm in the last 1000 years are toolarge to be explained by external (solar-volcanic) forcing, but they can be explained by outbreaks of bubonic plague that caused historically documented farm abandonment in western Eurasia. Forest regrowth on abandoned farms sequestered enough carbon to account for the observed CO2decreases. Plague-driven CO2 changes were also a significant causal factor in temperature changes during the Little Ice Age (1300–1900 AD).  相似文献   

20.
Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2–Eq yr–1 in1990 to 52 Tg CO2–Eq yr–1 in 2008. Adoption of thesink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2–Eq yr–1 (L), 42 TgCO2–Eq yr–1 (M) or 36 Tg CO2–Eq yr–1 (H). Among thesink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation andmanure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号