首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But there has been little research focusing on shale gas in Qiangtang Basin,Qinghai-Tibet Plateau,where a lot of Mesozoic marine shale formations developed.Based on the survey results of petroleum geology and comprehensive test analysis data for Qinghai-Tibet Plateau,for the first time,this paper discusses characteristics of sedimentary development,thickness distribution,geochemistry,reservoir and burial depth of organic-rich shale,and geological conditions for shale gas formation in Qiangtang Basin.There are four sets of marine shale strata in Qiangtang Basin including Upper Triassic Xiaochaka Formation (T3x),Middle Jurassic Buqu Formation (J2b),Xiali Formation (J2x) and Upper Jurassic Suowa Formation (J3s),the sedimentary types of which are mainly bathyal-basin facies,open platform-platform margin slope facies,lagoon and tidal-fiat facies,as well as delta facies.By comparing it with the indicators of gas shale in the main U.S.basins,it was found that the four marine shale formations in Qiangtang Basin constitute a multi-layer distribution of organic-rich shale,featuring a high degree of thickness and low abundance of organic matter,high thermal evolution maturity,many kinds of brittle minerals,an equivalent content of quartz and clay minerals,a high content of feldspar and low porosity,which provide basic conditions for an accumulation of shale gas resources.Xiaochaka Formation shale is widely distributed,with big thickness and the best gas generating indicators.It is the main gas source layer.Xiali Formation shale is of intermediate thickness and coverage area,with relatively good gas generating indicators and moderate gas formation potential.Buqu Formation shale and Suowa Formation shale are of relatively large thickness,and covering a small area,with poor gas generating indicators,and limited gas formation potential.The shale gas geological resources and technically recoverable resources were estimated by using geologic analogy method,and the prospective areas and potentially favorable areas for Mesozoic marine shale gas in Qiangtang Basin are forecast and analyzed.It is relatively favorable in a tectonic setting and indication of oil and gas,shale maturity,sedimentary thickness and gypsum-salt beds,and in terms of mineral association for shale gas accumulation.But the challenge lies in overcoming the harsh natural conditions which contributes to great difficulties in ground engineering and exploration,and high exploration costs.  相似文献   

2.
Three dumping sites have been formed at the northern region of Fushun City, Liaoning Province, for a large number of gangues including much oil shale that had been piled onto ground as gangue during long-term coal exploitation at West Fushun Open-pit Mine. Under appropriate conditions, self-combustion occurs after long-term exposure of oil shale and consequently such phenomena could be found almost everywhere at the three dumping sites. Much polycyclic aromatic hydrocarbons (PAHs) must be generated through oil shale self-combustion, a kind of incomplete combustion. In this paper, in order to make clear the PAHs distribution in oil shale and its self-combustion and their potential effects on surrounding environment, coal, low-grade oil shale, high-grade oil shale, burning oil shale, burnt oil shale and shaly soil collected from West Fushun Open-Pit Mine and West Dumping Site were analyzed quantitatively in 16 US EPA priority PAHs for the first time. Results showed that 16 PAHs in all samples were less than those in some bitumites and carbonaceous coals and were as much as those in lignites and anthracites from some Chinese mining areas. Coal and low-grade oil shale were abundant in lower molecular-weighted PAHs in contrast to high-grade oil shale with rich higher molecular-weighted PAHs. They had more benzo[a] pyrene than the highest background value in soils in Liaoning Province. So PAHs in these crude oil shales could cause potential effects on environment. There were at least 5121.40 p.g/kg PAils generated and at least 3976.70 μg/kg PAHs released into environment in the period from combustion beginning to sampling on the basis of calculation. Furthermore, the concentrations of 3-4 ring PAHs among them were very high. Therefore it could be said that oil shale self-combustion aggravated the environmental impacts of PAHs in oil shale. The low concentrations of PAHs in shaly soil showed that much PAHs had been released through recultivation and biodegradation.  相似文献   

3.
The effect of various depositional parameters including paleoclimate, paleosalinity and provenance, on the depositional mechanism of lacustrine shale is very important in reconstructing the depositional environment. The classification of shale lithofacies and the interpretation of shale depositional environment are key features used in shale oil and gas exploration and development activity. The lower 3rd member of the Eocene Shahejie Formation(Es3x shale) was sel...  相似文献   

4.
The Quseir Formation consists mainly of dark gray mudstones with a high organic matter content and excellent hydrocarbon-generating potential. The main objectives of this study are to highlight the dominant structural elements in the Komombo Basin, Egypt, and evaluate the geochemical characteristics of the Quseir Formation. Depth maps and a 3D structural model indicate two normal fault trends NW–SE and ENE–WSW. The NW–SE trend is the dominant one that created the primary half-graben system. The depth to the top of the Quseir Formation gradually decreases from the eastern and central parts towards the corners of the basin. The thickness of the Quseir Formation ranges from about 300 to 1000 ft. The 3D facies model shows that the shale has a large probability distribution in the study area, compared with the sandstone and siltstone. The source rock potential varies between good in the western part to very good in the eastern part of the basin. The organic-rich interval is dominated by gas-prone kerogen type III based on TOC and Rock-Eval. The pyrolysis data vitrinite reflectance (%Ro) (0.5–0.74%) and Tmax values (406–454C°) suggest a maturity level that ranges from immature to early maturity stage for hydrocarbon generation.  相似文献   

5.
A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C_(15)–n C_(19)), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C_(29) C_(27) C_(28), gammacerane/C_(30) hopane ratios of 0.15–0.32, and δD_(org) of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks; the grey limestones of the Maantang Formation are fair source rocks; and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.  相似文献   

6.
Shale gas is a resource of emerging importance in the energy field. Many countries in the world have been making big financial investments in this area. Carboniferous shale in the eastern Qaidam Basin shows good exploration prospects, but limited research and exploration work for shale oil and gas resources has been undertaken. Geochemical analyses were performed on shale derived from the Upper Carboniferous Hurleg Formation in the eastern Qaidam Basin, Qinghai Province, and secondary electron imaging capability of a Field Emission scanning electron microscope(FE-SEM) was used to characterize the microstructure of the shale. The reservoir and exploitation potential of the studied shale was assessed by comparison with research results obtained from the Barnett Formation shale in Fort Worth Basin, North America and the Basin shale of Sichuan province. The results indicate that the eastern Qaidam Basin Carboniferous shale is high-quality source rock. There are four major microstructural types in the study area: matrix intergranular pores, dissolution pores, intergranular pores, and micro-fractures. The size of the micropores varies from 6–633 nm, the majority of which is between 39–200 nm, with a relatively small number of micro-scale pores ranging from 0.13–1 μm. The pore characteristics of the studied shales are similar to the North American and Sichuanese shales, indicating that they have good reservoir potential. No micropores are present in the organic matter, which is induced by its composition; instead we found an important lamellar structure in the organic matter. These micropores and microfractures are abundant, and are connected to natural visible cracks that form the network pore system, which controls the storage and migration of shale gas. This connectivity is favorable for shale gas exploitation, providing great scientific potential and practical value.  相似文献   

7.
Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.  相似文献   

8.
The world’s present demand for oil and gas is still in a rapid growth period, and traditional oil and gas resources account for more than 60% of the global oil and gas supply. The Americas is the world’s second largest production and consumption center of liquid fuel, and is also the world’s largest natural gas producer. In 2016, the Americas had 85.3 billion tons of proven oil reserves and 18.7 trillion m3 of proven natural gas reserves, which account for 35.4% and 10.0% of world’s total reserves, respectively. It produced 1267.1 Mt of oil and 1125.4 billion m3 of natural gas, which account for 28.9% and 31.7% of the world’s total production, respectively. The crude oil and natural gas reserves are mainly distributed in the U.S., Canada and Venezuela. The U.S. is the earliest and most successful country in shale gas exploration and development, and its shale gas is concentrated in the southern, central and eastern U.S., including the Marcellcus shale, Barnett shale, EagleFord shale, Bakken shale, Fayettevis shale, Haynsvill shale, Woodford shale and Monterey/Santos shale. The potential oil and gas resources in the Americas are mainly concentrated in the anticline and stratigraphic traps in the Middle-Upper Jurassic slope deposition of the North Slope Basin, the Paleozoic Madsion group dolomite and limestone in the Williston Basin, dominant stratigraphic traps and few structural traps in the Western Canada Sedimentary Basin, the Eocene structural-stratigraphic hydrocarbon combination, structural-unconformity traps and structural hydrocarbon combination, and the Upper Miocene stratigraphic-structural hydrocarbon combination in the Maracaibo Basin of Venezuela, the stratigraphic-structural traps and fault horst, tilting faulted blocks and anticlines related to subsalt structure and basement activity in the Campos Basin, the subsalt central low-uplift belt and supra-salt central low-uplift belt in the Santos Basin of Brazil, and the structural-stratigraphic traps in the Neuquen Basin of Argentina. In addition, the breakthrough of seismic subsalt imaging technology makes the subsalt deepwater sea area of eastern Barzil an important oil and gas potential area.  相似文献   

9.
The Lower Yangtze region is one of the important marine sedimentation areas of oil and gas distribution in southern China,for its favorable source rocks,reservoirs and covers.However,the intense tectonic movements and complex hydrocarbon generation process made it highly impossible to form large-sized oil and gas reservoirs.So it was divided to different hydrocarbon-bearing preservation units in oil-gas exploration.Recent study shows that the Permian and Lower Triassic source rocks in the Lower Yangtze region are complicated in lithology.The hydrocarbon generation potential of limestone there is low while argillaceous source rocks are overall of high abundance with excellent organic types,now in the process of hydrocarbon generation,so differences in high maturity influence the evaluation of organic matter abundance and type.Biomarker characteristics indicate a reductive environment.n-alkanes are marked by a single peak,with no odd-even predominance.The composition and distribution of the carbon numbers of n-alkanes,and the high abundance of long-chain tricyclic terpanes are indicative of marine sedi-mentation.The high contents of pregnane,homopregnane,rearranged hopane suggest that the source rocks are of high maturity.There is a good linear correlation between methylphenanthrene index and vitrinite reflectance.The correlation of oil-source rocks indicated that the oil of Well HT-3 may come from the Permian Longtan Formation in the Huangqiao area,the oil of Wells Rong-2 and Juping-1 came from the Lower Triassic Qinglong Formation in the Jurong area.The exploration here is promising in those different source rocks which all have great potential in hy-drocarbon generating,and oil and gas were produced in the late stage of hydrocarbon generation.  相似文献   

10.
This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general.  相似文献   

11.
雷闯  殷世艳  叶加仁  吴景富 《地球科学》2021,46(10):3575-3587
为揭示东海盆地椒江凹陷油气勘探潜力,基于地球化学和盆地数值模拟方法对古新统月桂峰组、灵峰组和明月峰组烃源岩开展生烃能力和生烃过程研究.结果表明,月桂峰组和灵峰组泥岩有机质丰度高,以Ⅱ型干酪根为主,为水生生物和陆源高等植物混合来源,且形成于偏还原环境.夹有薄层炭质泥岩和煤的明月峰组泥岩有机质丰度低,以Ⅲ型干酪根为主,为陆源高等植物来源且形成于氧化环境.古新世至始新世,椒江凹陷大幅度沉降且古热流较高,是古新统烃源岩热演化程度增加的主要时期.受埋藏史和成熟度史共同控制,月桂峰组和灵峰组经历了2次生烃作用,第1次发生在古新世晚期,第2次发生在始新世中期至晚期,生烃强度高.明月峰组仅在始新世末期经历了1次生烃作用,生烃强度低.椒江凹陷古新统烃源岩生烃潜力强,具有广阔的油气勘探前景,应围绕生烃中心尤其是月桂峰组生烃中心选择形成于中新世之前的有效圈闭进行钻探.   相似文献   

12.
Organic geochemical and palynofacies analyses were carried out on shale intervals of the Late Paleocene Patala Formation at Nammal Gorge Section, western Salt Range, Pakistan. The total organic carbon content and Rock-Eval pyrolysis results indicated that the formation is dominated by type II and type III kerogens. Rock-Eval \({T}_{\mathrm{max}}\) vs. hydrogen index (HI) and thermal alteration index indicated that the analysed shale intervals present in the formation are thermally mature. \(S_{1}\) and \(S_{2}\) yields showed poor source rock potential for the formation. Three palynofacies assemblages including palynofacies-1, palynofacies-2 and palynofacies-3 were identified, which are prone to dry gas, wet gas and oil generation, respectively. The palynofacies assessment revealed the presence of oil/gas and gas prone type II and type III kerogens in the formation and their deposition on proximal shelf with suboxic to anoxic conditions. The kerogen macerals are dominated by vitrinite and amorphinite with minor inertinite and liptinite. The kerogen macerals are of both marine and terrestrial origin, deposited on a shallow shelf. Overall, the dark black carbonaceous shales present within the formation act as a source rock for hydrocarbons with poor-to-moderate source rock quality, while the grey shales act as a poor source rock for hydrocarbon generation.  相似文献   

13.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

14.
This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study is divided into three lithostratigraphic units from bottom to top: the Zongzhuo, Sangdanlin, and Zheya formations. Abundant radiolarian fossils were obtained from the Sangdanlin section and 54 species of 30 genera were identified and assigned as follows: Cryptamphorella conara-C. macropora the late Cretaceous Zone and Amphisphaera coronate, Buryella tetradica-Bekoma campechensis, and B.bidartensis-B. divaricata the Paleocene-early Eocene Interval Zones. The Paleocene–early Eocene radiolarian zones are comparable to the radiolarian zones RP4-RP8 in New Zealand. Based on the data of radiolaria and lithofacies, it is suggested that the Zongzhuo Formation should be deposited along the base of the north-facing, continental slope of the Greater Indian continental margin, and the Sangdanlin Formation should be a deep marine, sedimentary sequence located in a foreland basin. The early Eocene radiolarian fauna in the Sangdanlin Formation constrains the initial age of the India-Asia collision to no later than 53.6 Ma.  相似文献   

15.
The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ13C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.  相似文献   

16.
The organic matters within the Paleocene Aaliji and Kolosh Formations in the well TT-04, Taq Taq Oil Field in Kurdistan Region, NE Iraq have been studied optically and also analytically by means of pyrolysis, Gas Chromatography (GC), and Gas Chromatography/Mass Spectrometry (GC/MS). Amorphous organic matters seemed to be the dominant component of the extracted organic matters within the studied section with an obvious increase of the Phytoclasts at the upper part of Kolosh Formation. Thermal Alteration Index, vitrinite reflectance, pyrolysis, and gas chromatography data all indicated the maturity of the lower part from the studied layers (known generally as Aaliji/Kolosh) and within the early stages of oil generation. Oil–source correlation indicates the possibility of contribution of the Paleocene source rocks in generating the accumulated oil in the Eocene Pila Spi reservoir in the field which also appeared to be a mature and of marine-to-mixed carbonate source. Oil–oil correlation between the oil in Pila Spi and the oil in the Upper Cretaceous reservoirs showed the possibility of existence of more than one source for the two oils. GC/MS analysis for the Pila Spi oil indicated the effect of biodegradation which may be considered as one of the reasons for being the American Petroleum Institute (API) of this oil about 24° while the oil in the Cretaceous reservoirs is of more than 47° API.  相似文献   

17.
Based on analysis of the well drilling core from Subei basin, the authors conclude that during the Late Cretaceous and Paleocene, Subei basin was linked with the sea and the deposit was affected by transgression. The cause of marine transgression may be that since Late Cretaceous and Paleocene tension power had predominated ground-stress conditions of the East China Sea and developed a series of half-graben-like basins filled by a huge thick sediment of the Early Tertiary in the shelf of Huabei-Bohai gulf, Subei-South Yellow Sea and East China Sea. Consequently, seawater transgressed from the East China Sea to the Yellow Sea and linked halfgraben-like basins on the shelf to the sea within a short period. During the sedimentation of the Late Cretaceous Taizhou Formation and Paleocene Funing Formation, the Subei basin had formed the ostracoda-enriched dark shale, including predominantly the whole basin E1 f 2 Formation and E1 f 4 Formation and local K2 t 2 Formation, which became the main source rocks of the basin. The evidence of paleontology, minerals in rocks and geochemistry can help confirm the environment of the lake basin that developed during the Late Cretaceous and Paleocene. We generally designate this environment as “near sea lake basin” and the sea-transgressed layer and member as “transgression lake basin”.Whereas, it is generally called “inland lake and river alluvium plain” during the sedimentation of the Eocene Dainan Formation and Sanduo Formation. This research is not only significant to the paleogeographic reconstruction of the Subei basin during the Late Cretaceous and Paleocene, but also important in understanding the development and distribution of the source rocks and evaluating the potential of oil and gas generation. __________ Translated from Acta Sedimentologica Sinica, 2007, 25(3): 380–385 [译自: 沉积学报]  相似文献   

18.
林俊峰  胡海燕  黎祺 《地球科学》2017,42(7):1124-1133
焦石坝地区五峰组-龙马溪组页岩富集有大量的天然气,但针对页岩气地球化学特征研究还较薄弱,其蕴含的地质意义不甚明确.通过页岩气组分及其碳同位素特征和页岩干酪根的碳同位素特征分析,讨论了页岩气的来源、成因类型和完全倒转的碳同位素分布特征.五峰组-龙马溪组页岩具有很好的生烃能力、有机质丰度与含气量的关系有明显的正相关性、甲烷与干酪根相似的碳同位素特征、地层的超压特征等,综合表明研究区天然气应为页岩自生自储的页岩气;页岩气的甲烷含量均超过98%,其碳同位素平均为-29.93‰,反映了成熟度已经达到过成熟干气阶段;相对稳定的ln(C1/C2)和快速增大的ln(C2/C3)揭示其成因主要为二次裂解气;页岩气碳同位素完全倒转的分布特征主要受到在相对封闭环境中的原油裂解生气作用的影响,其完全倒转的碳同位素分布特征也反映了研究区良好的页岩气保存、富集条件.   相似文献   

19.
Tertiary sequences in the Elazig and Malatya Basins, eastern part of Taurus Orogenic Belt, are investigated with the aim of defining the benthic foraminiferal biozones. Tertiary geological units from bottom to top are as follows: Basement rocks, Zorban Formation, Yildiztepe Formation, Suludere Formation, Gedik Formation (Malatya Basin); Elazig Magmatics, Keban Metamorphics, Harami Formation, Kuscular Formation, Seske Formation, Kirkgecit Formation (Elazig Basin). Middle-Upper Eocene Yildiztepe, Suludere and Gedik Formations; Upper Paleocene-Lower Eocene Seske Formation and Middle-Upper Eocene Kirkgecit Formation are all characterized by interbedded clastics and carbonate rocks. Six stratigraphic sections are studied in detail for foraminiferal biostratigraphy. Eight benthic foraminiferal biozones are reported. These are; Coskinolina rajkae biozone in the Late Paleocene (Thanetian), Assilina yvettae, Idalina sinjarica biozones in the Late Paleocene; Asterocyclina alticostata gallica biozone in the Early Eocene (Late Cuisian), Nummulites millecaput biozone in the Middle Eocene (Middle Lutetian), Nummulites aturicus biozone in the Middle Eocene (Late Lutetian), Nummulites perforatus biozone in the Middle Eocene (Bartonian), Nummulites fabianii biozone in the Late Eocene (Priabonian). Some key taxa are illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号