首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

3.
The applicability of the properties of central configurations proceeding from the many-body problem to study of gaseous sphere cloud evolution during its gravitational contraction is justified. It is shown that the product runs to a constant value in the asymptotic time limit of simultaneous collision of all the particles of the cloud where is a form-factor of the potential energy and is a form-factor of the moment of inertia.The spherical bodies as well as ellipsoids of rotation and general ellipsoids with a one-dimensional mass distribution (k),k[0, 1] are found to possess the property =const.
. , - , , ., , - =const., , (k),k[0, 1].
  相似文献   

4.
We report here on high angular resolution observations of solar noise storm sources at a frequency of 75 MHz. The data for the study were obtained at the Gauribidanur Radio Observatory (long.: 77°2612 E, lat.: 13°3612 N) about 100 km north of Bangalore, India, during the solar eclipse of 24 October 1995. Our main conclusion is that there are structures of angular size 2.5 arc min in the outer solar corona.  相似文献   

5.
The synthetic Voigt profile of the following transitions (v=0,v=0), (v=0,v=1), (v=1,v=1), (v=1,v=0) have been computed for different concentrations and temperatures of CO and compaed to the measured intensities of the UV sunspot spectrum by a high resolution spectrograph. From this comparison the solar minimum temperature has been determined.  相似文献   

6.
Doppler dimming of the Ovi resonance lines (1032 Å, 1037 Å) in an expanding corona is calculated including the pumping effect on the Ovi 1037.61 Å of both Cii lines at 1036.34 Å and 1037.02 Å, and the effect of the width of the absorption profiles of the coronal oxygen ions along the incident radiation. The pumping effect of the Cii line at 1036.34 Å allows us to extend to approximately 450 km s–1 the measurement of solar wind velocities with the Ovi line ratio technique. Since the emissivity ratio of the Ovi doublet depends on the width of the oxygen coronal absorbing profiles, this ratio can provide an accurate measurement of the solar wind velocity in the case that the width of the absorbing profile along the direction of the incident radiation is independently determined. However, if on the one hand the ratio of the emissivities of the Ovi doublet has limitations in probing the wind velocity, on the other hand it can be used as a diagnostics for inferring the velocity distribution of the coronal Ovi ions along the radial, and detecting possible velocity anisotropies. This diagnostics, applied to recent observational results, allows us to infer that the velocity distribution of the oxygen ions is much broader in the direction perpendicular to the magnetic field direction, and that the acceleration of the fast solar wind in the first 2 solar radii is high.  相似文献   

7.
We study the effects of the sector structure of the interplanetary magnetic field (IMF) on the Galactic cosmic ray (GCR) anisotropy at solar minimum by using Global Network neutron monitor data. The hourly neutron monitor data for 1976 were averaged for the positive (+) and negative (–) IMF sectors (+ and – correspond to the antisolar and solar directions of magnetic field lines, respectively) and then processed by the global survey method. We found that the magnitude of the GCR anisotropy vector is larger in the positive IMF sector and that the phase shifts toward early hours. The derived GCR components A r, A , and A for the different + and – sectors are then used to calculate the angle ( 46°) between the IMF lines and the Sun–Earth line, the solar wind velocity U ( 420 km/s), the ratio of the perpendicular (K ) and parallel (K ||) diffusion coefficients K /K || = ( 0.33), and other parameters that characterize the GCR modulation in interplanetary space.  相似文献   

8.
Pitch angle scattering of energetic particles (100 MeV) in the interplanetary medium are studied using Helios 1 and 2 magnetometer and plasma data during 1976 near the minimum of solar activity. An IMF configuration was used in the computer experiments which allowed the pitch angle diffusion coefficient, D and hence the parallel mean free path, to be determined. The radial mean free path was found to vary as r r -0.9 between 0.4 and 1 AU, but between 0.3 and 0.4 AU it decreases significantly. To reconcile our value of r at 1 AU, lying between 0.01 and 0.02 AU, with the average prompt solar proton event profile, an increasing value of r at lower radial distances would be required.  相似文献   

9.
An effect of the solar wind on the motion of interplanetary dust particles is investigated. An equation of motion is derived. It is pointed out that the Pseudo-Poynting-Robertson effect (and its special case — a corpuscular drag) and the corpuscular sputtering represent in reality one and the same effect within the framework of special relativity. In this context perturbation equations of celestial mechanics are also discussed.  相似文献   

10.
. . .
Transfer of resonance radiation in infinite medium is considered as a process of random walks of photons. Close relation is shown to exist between the problems of transfer of line radiation and the stable distributions of the probability theory. This relation is used as a basis of a new method for the investigation of the asymptotic properties of the radiation field far from the sources.


,   相似文献   

11.
The HXIS, a joint instrument of the Space Research Laboratory at Utrecht, The Netherlands, and the Department of Space Research of the University of Birmingham, U.K., images the Sun in hard X-rays: Six energy bands in energy range 3.5–30 keV, spatial resolution 8 over Ø 240 and 32 over Ø 624 field of view, and time resolution of 0.5–7 s depending on the mode of operation. By means of a flare flag it alerts all the other SMM instruments when a flare sets in and informs them about the location of the X-ray emission. The experiment should yield information about the position, extension and spectrum of the hard X-ray bursts in flares, their relation to the magnetic field structure and to the quasi-thermal soft X-rays, and about the characteristics and development of type IV electron clouds above flare regions.  相似文献   

12.
Past studies of interplanetary magnetic sector boundaries have been based on the assumption that one can determine the field polarities by comparing the field directions with those of the nominal Parker spiral angles. Previous investigators have found evidence for decreases of B, the magnitude of the magnetic fieldB, and increases of , the angle betweenB and the ecliptic plane, at sector boundaries. Others have argued that the characteristic thickness of sector boundaries exceeds that of tangential discontinuities, making sector boundaries a separate class of structures.We use a simple technique for inferring the polarities of interplanetary magnetic fields based on the assumption thatE > 2 keV electrons are always flowing along the magnetic field away from the Sun. Electron data from the UC Berkeley experiment on the ISEE-3 spacecraft are used to examine periods around several apparent sector boundaries in 1978 and 1979. We compare properties of (a) boundaries with field polarity changes and (b) large-angle ( > 60°) directional discontinuities with no field polarity changes. We find no significant differences between the sector boundaries and the directional discontinuities in terms of associated decreases in B or of values of . These results suggest no significant difference between sector boundaries and directional discontinuities other than the change in field polarities. Within limited statistics we find that about half the polarity changes would not have been identified using a requirement that > 90° and that half of the > 120° discontinuities would have been misidentified as polarity changes.  相似文献   

13.
14.
A model of interplanetary and coronal magnetic fields   总被引:5,自引:0,他引:5  
A model of the large-scale magnetic field structure above the photosphere uses a Green's function solution to Maxwell's equations. Sources for the magnetic field are related to the observed photospheric field and to the field computed at a source surface about 0.6 R above the photosphere. The large-scale interplanetary magnetic field sector pattern is related to the field pattern at this source surface. The model generates magnetic field patterns on the source surface that compare well with interplanetary observations. Comparisons are shown with observations of the interplanetary magnetic field obtained by the IMP-3 satellite.  相似文献   

15.
We propose that the coronal source longitude and latitude of solar wind plasma can be estimated within 10°. Previous writers have argued that the solar wind in the ecliptic should originate near the equator and that a quasi-radial hypervelocity (QRH) approximation (constant radial flow) is valid beyond the magnetohydrodynamic critical points. We demonstrate that an extension of the QRH approximation (as if the solar wind flowed radially with constant velocity from the center of the Sun) yields a proper estimate of the high coronal source location at the release zone where the solar wind makes its transition to radial interplanetary flow. This extrapolated QRH (or EQRH) approximation succeeds because the two main corrections to this source estimate, coronal corotation and interplanetary acceleration, tend to cancel (the former correcting the source location eastward, the latter westward). Although this ideal spiral approximation was first suggested by Snyder and Neugebauer (1966), only recently has it been demonstrated that it relates a wide range of interplanetary plasma, magnetic field and energetic particle data to observed coronal magnetic structure. We estimate quantitatively the error in the EQRH approximation by comparison with steady-state streamlines predicted by azimuthally independent and dependent theoretical solutions to the steady-state plasma equations. We find the error in both cases 10° in longitude and therefore suggest that the EQRH approximation offers the means to relate observed solar initial conditions in the release zone directly to interplanetary measurements. If, in addition, the EQRH approximation also leads to agreement with low coronal structure, then there should be a straightforward correspondence to otherwise unobservable high coronal structure.  相似文献   

16.
The ion composition instrument (ICI) on ISEE-3 has observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km s–1. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of3He flares occurred during this time.The long-term average4He++/3He++ flux ratio R, was 2050 ± 200, a agreement with a previously reported result obtained using part of this data set, and in very good agreement with the previous measurements made over much shorter periods of time with the foil technique. The R values for 6-month intervals show statistically significant differences. The highest of these values is 2300 and coincides with the solar maximum of cycle 21 indicating that at solar maximum there may be changes in the character and rate of occurrence of short-term variations in R. We also find that R drops under conditions of low proton flux in the solar wind, and that it is high when solar wind speeds are lowest.At solar wind speeds above 400 km s–1 R is nearby constant at about 2000; at lower speeds it is larger and more variable, in agreement with the idea that the sources of high and low speed wind are different. At times of sector boundary current sheet crossings, identified with coronal streamers, there is a characteristic rise in the value of R indicating an encounter with a plasma with reduced3He++ abundance. Autocorrelations have been computed for4He++ and3He++ and indicate correlation times of about 14 and 20 hr, respectively. Periods of duration of about one day whenR is less than 1000 tend to coincide with the observation of compound streams.The possibility of detectable increases in3He++ flux in plasma which left the Sun at the time of3He flares has been investigated, but no significant increase was seen.  相似文献   

17.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

18.
A study of the properties of the cosmic radiation of energy - 10 MeV generated by solar flares is reported. Data from four Pioneer spacecraft in interplanetary orbits, and separated by 180° in heliocentric longitude are employed. Attention is restricted to the properties evident at times in excess of 1 day after the occurrence of the parent flare. The anisotropic character of the radiation; the gradients in heliocentric longitude; the decay time constants; and the energy spectra of the radiation are all studied in detail.It is found that the equilibrium anisotropy assumes a direction - 45° E of the satellite-Sun line at very late times. It is suggested that the anisotropy at such times is parallel to E × B. This observation confirms that convection is the determining process in the escape of the solar cosmic rays from the solar system. It indicates that a positive radial gradient of solar cosmic radiation density has builtup at orbit of Earth some 4 days after a flare. This results in an effective convective velocity of approximately 1/2 the solar wind velocity. Direct measurements indicate the presence of strong gradients in heliocentric longitude even at very late times ( 4 days). These gradients are essentially invariant with respect to time, e-folding angles of n - 30° have been observed at - 10 MeV. The presence of these gradients has a major effect on the temporal variation of the cosmic ray flux during the decay phase of the flare effect. Thus, the observed decay time constant is either increased or decreased relative to the convective value depending on the position of the observer relative to the centroid of the cosmic ray population injected by the flare. The effect of the gradient becomes more pronounced at lower energies, and may even exceed the convective removal rate. The observed decay time constant, the characteristics of the anisotropy, and the gradient in longitude are shown to be inter-related as demanded by theory. It is shown that the exponent of the cosmic ray spectrum is dependent on the location of the observer relative to the centroid of the cosmic ray population injected by the parent flare. At a given point in the frame of reference of the cosmic ray population, the spectral exponent is invariant with time.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

19.
It is shown that escaping of solar flare energetic protons into interplanetary space as well as their relation to the flare gamma-ray emission depend on the parameter = 8p/B 0 2 , where p is the pressure of hot plasma and energetic particles and B 0 is the magnetic field in a flaring loop. If 1, the bulk of the energetic protons escape to the loss cone because of diffusion due to small-scale Alfvén-wave turbulence, and precipitate into the footpoints of the flaring loop. The flare then produces intense gamma-ray line emission and a weak flux of high energy protons in interplanetary space. If >*0.3-1.0, then fast eruption of hot plasma and energetic particles out of the flaring loop occurs, this being due to the flute instability or magnetic-field-plasma nonequilibrium. The flare then produces a comparatively weak gamma-radiation and rather intense proton fluxes in interplanetary space. We predict a modulation of the solar flare gamma-ray line emission with a period 1 s during the impulsive phase that is due to the MHD-oscillations of the energy release volume. The time lag of the gamma-ray peaks with respect to the hard X-ray peaks during a simultaneous acceleration of electrons and protons can be understood in terms of strong diffusion.  相似文献   

20.
Six spectrograms of the solar spectrum were obtained in the region from 1970 to 1800 at a resolution of approximately 2 × 105 with a rocket-borne spectrograph using an echelle as the principal dispersing element. Reduction of data obtained has been completed in the region from 1946.5 to 1963.5 , in which 79 absorption features are measured and 33 identified. Most of the identified stronger lines are due to Fei. A significant feature of the solar spectrum in this region coincides with the raie ultime of Sei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号