首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present the results from high-resolution numerical simulations of three heavy rainfall events over the Korean Peninsula. The numerical results show that the prediction accuracy for heavy rainfall events improved as horizontal resolution increased. The fine-grid precipitation fields were much closer to the real precipitation fields in the case of large synoptic forcing over the Korean Peninsula. In the case of large convective available potential energy and weak synoptic forcing, it seems that even when using a high resolution, the models still showed poor performance in reproducing the observed high precipitation amounts. However, activation of the cumulus parameterization scheme in the intermediate resolution of 9 km, even at a grid spacing of 3 km, had a positive impact on the simulation of the heavy rainfall event.  相似文献   

2.
This study examines antecedent mid-tropospheric frontogenesis (AMF) resulting from the interaction between Typhoon Rusa (2002) and a midlatitude trough over the Korean Peninsula. In this event, the AMF contributed to the first peak in the time series of rainfall in Gangneung (37.75°N, 128.90°E), occurring about 12 h before the time of the extratropical transition (ET) process of the tropical cyclone (TC). Using observations and high-resolution model outputs, we showed that the AMF contributed to the antecedent rainfall in Gangneung during the first rainfall period when Gangneung was located outside of Rusa's sphere of direct influence. A Weather Research Forecasting (WRF) model experiment was conducted to diagnose the frontogenetical features and associated precipitation processes in detail. The experiment revealed that the AMF was mainly forced by the horizontal deformation forcing (HDF). The direction of the HDF was oriented from southwest to northeast in the middle part of the peninsula. The HDF increased positively due to the confluence of the southeasterlies from the TC and the northwesterlies emanating from the midlatitude trough. The experiment also suggested that the mid-tropospheric moisture originated from the subtropical ocean and deposited into the frontal region by the southerlies on the eastern periphery of the TC, which enhanced the convergence of moisture flux in the frontal region during the first rainfall period. The thermally direct circulation associated with the AMF lead to the mid-tropospheric saturation, which enhanced the precipitation of the first rainfall event together with the orographically forced convection at the low level above Gangneung.  相似文献   

3.
This study examines the ability of the cloud-resolving weather research and forecasting (WRF) model to reproduce the convective cells associated with the flash-flooding heavy rainfall near Seoul, South Korea, on 12 July 2006. A triply nested WRF model with the highest resolution of 3-km horizontal grid spacing was integrated with conventional analysis data. The WRF model simulated the initiation of isolated thunderstorms, and the formation of a convective band, cloud cluster, and squall line at nearly the right time. The corresponding precipitation simulation was also reasonably reproduced in its distribution, although the amount was underestimated. A sensitivity experiment that excludes the orography over the peninsula revealed that orographic forcing over the peninsula is responsible for about 20% increase in precipitation over the heavy rainfall region. It was identified that in addition to the up-lifting local orographic forcing to the west of the mountain range in South Korea, anticyclonic circulation due to the presence of the Gaema Heights in North Korea contribute to the confinement of convective activities in the heavy rainfall region.  相似文献   

4.
W. May 《Climate Dynamics》2004,22(2-3):183-204
In this study the simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for the present-day and the future climate is investigated. This is done on the basis of a global time-slice experiment (TSL) with the ECHAM4 atmospheric general circulation model (GCM) at a high horizontal resolution of T106. The first time-slice (period: 1970–1999) represents the present-day climate and the second (2060–2089) the future climate. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1997–2002) and rainfall data from the ECMWF re-analysis (ERA, 1958–2001) are considered. ERA reveals serious deficiencies in its representation of the variability and extremes of daily rainfall during the Indian summer monsoon. These are mainly a severe overestimation of the frequency of wet days over the oceans and in the Himalayas, where also the rainfall intensity is overestimated. Further, ERA shows unrealistically heavy rainfall events over the tropical Indian Ocean. The ECHAM4 atmospheric GCM at a horizontal resolution of T106, on the other hand, simulates the variability and extremes of daily rainfall in good agreement with the observations. The only marked deficiencies are an underestimation of the rainfall intensity on the west coast of the Indian peninsula and in Bangladesh, an overestimation over the tropical Indian Ocean, due to an erroneous northwestward extension of the tropical convergence zone, and an overestimation of the frequency of wet days in Tibet. Further, heavy rainfall events are relatively strong in the centre of the Indian peninsula. For the future, TSL predicts large increases in the rainfall intensity over the tropical Indian Ocean as well as in northern Pakistan and northwest India, but decreases in southern Pakistan, in the centre of the Indian peninsula, and over the western part of the Bay of Bengal. The frequency of wet days is markedly increased over the tropical Indian Ocean and decreased over the northern part of the Arabian Sea and in Tibet. The intensity of heavy rainfall events is generally increased in the future, with large increases over the Arabian Sea and the tropical Indian Ocean, in northern Pakistan and northwest India as well as in northeast India, Bangladesh, and Myanmar.  相似文献   

5.
Summary Attempts to use the 4-parameter Kappa distribution (K4D) with the maximum likelihood estimates (MLE) on the summer extreme daily rainfall data at 61 gauging stations over South Korea have been made to obtain reliable quantile estimates for several return periods. A numerical algorithm for searching MLE of K4D by minimizing the negative log-likelihood function with penalty method has been described. The isopluvial maps of estimated design values corresponding to selected return periods have been presented. The highest return values are centered at sites in the south-western part of the Korean peninsula. The distribution of return values for annual maxima of 2-day precipitation (AMP2) is more similar to the climatological features of annual total precipitation of Korea than that of annual maxima of daily precipitation (AMP1). Our results of return values delineate well the horizontal patterns of the heavy precipitation over the Korean peninsula. Received January 15, 2001 Revised October 8, 2001  相似文献   

6.
We demonstrate that a large-scale longitudinally symmetric global phenomenon in the Southern Hemisphere sub-polar region can transmit its influence over a remote local region of the Northern Hemisphere traveling more than 100° of latitudes (from ~70°S to ~40°N). This is illustrated by examining the relationship between the Southern Annular Mode (SAM) and the Korean Monsoon Rainfall (KMR) based on the data period 1983-2013. Results reveal that the May-June SAM (MJSAM) has a significant in-phase relationship with the subsequent KMR. A positive MJSAM is favorable for the summer monsoon rainfall over the Korean peninsula. The impact is relayed through the central Pacific Ocean. When a negative phase of MJSAM occurs, it gives rise to an anomalous meridional circulation in a longitudinally locked air-sea coupled system over the central Pacific that propagates from sub-polar to equatorial latitudes and is associated with the central Pacific warming. The ascending motion over the central Pacific descends over the Korean peninsula during peak-boreal summer resulting in weakening of monsoon rainfall. The opposite features prevail during a positive phase of SAM. Thus, the extreme modes of MJSAM could possibly serve as a predictor for ensuing Korean summer monsoon rainfall.  相似文献   

7.
An investigation has been carried out using observational data and a numerical model to explain the formation and development of heavy precipitation systems on September 21, 2010. These systems were responsible for heavy rainfall over the middle Korean peninsula, with a maximum 24-h rainfall amount greater than 290 mm in the Seoul metropolitan area. Both observational analysis and a numerical simulation indicate that an important starting condition for this heavy rainfall event is the presence of a pressure trough over the Shandong peninsula and the Yellow Sea. Convective cells formed in the early morning over this trough area, grew into larger systems as they moved eastward, and induced the formation of a meso low over the Yellow Sea around 0000 UTC on September 21, 2010. A stationary front with significant vertical circulation developed in response to the deformation of flow associated with the meso low. In the meantime, multicell-type convective systems continuously developed and moved along the front. These storms developed further and produced heavy rainfall over the middle Korean peninsula, which includes the Seoul metropolitan area. According to observations, the band structure appeared to change after 0700 UTC as a narrow convection band developed over the sea, upstream of the existing band of multicell storms. Numerical simulation showed a similar transition. However, it failed to reproduce the stationary behavior of the observed band.  相似文献   

8.
This study identifies favorable synoptic backgrounds for indirect precipitation events over the Korean Peninsula that occur well in advance of tropical cyclone (TC) landfall. Two TCs, i.e., Rammasun (2002) and Maemi (2003) that made landfall and produced heavy rainfall over the Peninsula are compared. Although both had a remarkably similar accumulated rainfall pattern over the peninsula, the temporal evolutions of hourly rainfall were different. Only Maemi had an indirect precipitation event in conjunction with a midlatitude trough to its north. The confluent flows at middle-to-upper levels were strengthened due to the increased pressure gradient between the midlatitude trough and the subtropical high, and the warm advection by the confluent flows also became stronger near the confluent zone. By contrast, Rammasun encountered the subtropical ridge while moving northward, which results in slow recurvature and reduction of the thermal gradient over the peninsula. The highly baroclinic synoptic backgrounds in the Maemi case lead to the midlevel frontogenesis. Budget analyses using the three-dimensional frontogenesis equation revealed that the horizontal deformation forcing had a primary role in generating the front. The front was associated with a thermally direct circulation that contributed to strong ascent and indirect precipitation over the peninsula well in advance of the landfall of Maemi. Moreover, the indirect precipitation could intensify due to the abundant low-level moisture supply to the frontal zone by the southerly wind on the east side of the TC.  相似文献   

9.
An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001–2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.  相似文献   

10.
The fifth-generation Pennsylvania State University/NCAR Mesoscale Model Version 3 (MM5V3) was used to simulate extreme heavy rainfall events over the Yangtze River Basin in June 1999. The effects of model's horizontal and vertical resolution on the extreme climate events were investigated in detail. In principle, the model was able to characterize the spatial distribution of monthly heavy precipitation. The results indicated that the increase in horizontal resolution could reduce the bias of the modeled heavy rain and reasonably simulate the change of daily precipitation during the study period. A finer vertical resolution led to obviously improve rainfall simulations with smaller biases, and hence, better resolve heavy rainfall events. The increase in both horizontal and vertical resolution could produce better predictions of heavy rainfall events. Not only the rainfall simulation altered in the cases of different horizontal and vertical grid spacing, but also other meteorological fields demonstrated diverse variations in terms of resolution change in the model. An evident improvement in the simulated sea level pressure resulted from the increase of horizontal resolution, but the simulation was insensitive to vertical grid spacing. The increase in vertical resolution could enhance the simulation of surface temperature as well as atmospheric circulation at low levels, while the simulation of circulation at middle and upper levels were found to be much less dependent on changing resolution. In addition, cumulus parameterization schemes showed high sensitivity to horizontal resolution. Different convective schemes exhibited large discrepancies in rainfall simulations with regards to changing resolution. The percentage of convective precipitation in the Grell scheme increased with increasing horizontal resolution. In contrast, the Kain-Fritsch scheme caused a reduced ratio of convective precipitation to total rainfall accumulations corresponding to increasing horizontal resolution.  相似文献   

11.
We used the regional climate model RegCM3 to investigate the role of the swamps of southern Sudan in affecting the climate of the surrounding region. Towards this end, we first assessed the performance of a high resolution version of the model over northern Africa. RegCM3 shows a good skill in simulating the climatology of rainfall and temperature patterns as well as the related circulation features during the summer season, outperforming previous coarser resolution applications of the model over this region. Sensitivity experiments reveal that, relative to bare soil conditions, the swamps act to locally modify the surface energy budget primarily through an increase of surface latent heat flux. Existence of the swamps leads to lower ground temperature (up to 2 °C), a larger north–south temperature gradient, and increased local rainfall (up to 40 %). Of particular importance is the impact on rainfall in the surrounding regions. The swamps have almost no impact on the rainfall over the source region of the Nile in Ethiopia or in the Sahel region; however, they favor wetter conditions over central Sudan (up to 15 %) in comparison to the bare desert soil conditions.  相似文献   

12.
针对当前暴雨预报检验采用二分类事件检验方法存在较严重的“空报”“漏报”双重惩罚,没有考虑暴雨时空分布不均和预报评分可比性不够等问题,在分析预报员对暴雨预报评分期望值基础上,设计了一种基于可预报性的暴雨预报检验评分新方法和计算模型,分析了理想评分,并对2015-2016年4-10月中国中央气象台5 km×5 km定量降水格点预报和降水落区等级暴雨预报进行评分试验,获得了以下结果和结论:(1)预报员对暴雨预报评分期望值呈现梯级下降特征,与传统的TS评分存在显著差异;(2)设计了一种基于可预报性的暴雨预报检验新方法,通过引入e指数函数构建暴雨预报评分基函数,进而构建暴雨评分模型,该模型可以较好地拟合预报员对暴雨预报评分的期望值,同时改善了评分在不同量级阈值处的断崖式突变情况;(3)提出了预报与观测的邻域匹配方法,即一个预报点与所定义邻域中的一组观测相匹配,并利用距离加权最大值法确定暴雨评分值权重系数,预报与观测距离越近,距离权重系数越大,评分值权重越大,提高了评分的合理性,避免了距离较远的匹配站点得高分不利于鼓励预报员提高预报精度的问题;(4)对中国中央气象台逐日5 km×5 km水平分辨率的定量降水格点预报产品和中央气象台定量降水落区等级预报产品进行了评分试验,暴雨预报准确率全国平均值大于60分。基于可预报性的暴雨预报检验新评分与传统暴雨预报TS评分逐日演变特征相似,但可以较好地解析TS为0的预报评分,解析后的新评分与预报员和公众的心理预期更为接近。   相似文献   

13.
The West African monsoon has over the years proven difficult to represent in global coupled models. The current operational seasonal forecasting system of the UK Met Office (GloSea4) has a good representation of monsoon rainfall over West Africa. It reproduces the various stages of the monsoon: a coastal phase in May and June, followed by onset of the Sahelian phase in July when rainfall maxima shift northward of 10N until September; and a secondary coastal rainfall maximum in October. We explore the dynamics of monsoon onset in GloSea4 and compare it to reanalyses. An important difference is the change in the Saharan heat low around the time of Sahelian onset. In Glosea4 the deepening heat low introduces moisture convergence across an east-west Sahelian band, whereas in the reanalyses such an east-west organisation of moisture does not occur and moisture is transported northwards to the Sahara. Lack of observations in the southern Sahara makes it difficult to verify this process in GloSea4 and also suggests that reanalyses may not be strongly constrained by station observations in an area key to Sahelian onset. Timing of monsoon onset has socio-economic importance for many countries in West Africa and we explore onset predictability in GloSea4. We use tercile categories to calculate probabilities for onset occurring before, near and after average in four different onset indicators. Glosea4 has modest skill at 2–3 months’ lead time, with ROC scores of 0.6–0.8. Similar skill is seen in hindcasts with models from the ENSEMBLES project, even in models with large rainfall biases over the Sahel. Forecast skill derives from tropical SST in June and many models capture at least the influence of the tropical Atlantic. This suggests that long-range skill for onset could be present in other seasonal forecasting systems in spite of mean rainfall biases.  相似文献   

14.
Complex topography modifies local weather characteristics such as air temperature, rainfall and airflow within a larger regional extent. The Cape Peninsula around Cape Town, South Africa, is a complex topographical feature responsible for the modification of rainfall and wind fields largely downstream of the Peninsula. During the passage of a cold front on 2 October 2002, an extreme wind event associated with tornado-like damage occurred in the suburb of Manenberg, however synoptic conditions did not indicate convective activity typically associated with a tornado. A numerical regional climate model was operated at very high horizontal resolution (500 m) to investigate the dynamics of the event. The model simulated an interaction between the topography of the peninsula and an airflow direction change associated with the passage of the cold front. A small region of cyclonic circulation was simulated over Manenberg that was embedded in an area of negative vorticity and a leeward gravity wave. The feature lasted 14 min and moved in a north to south direction. Vertically, it was not evident above 220 m. The model assessment describes this event as a shallow but intense cyclonic vortex generated in the lee of the peninsula through an interaction between the peninsula and a change in wind direction as the cold front made landfall. The model did not simulate wind speeds associated with the observed damage suggesting that the horizontal grid resolution ought to be at the scale of the event to more completely understand such microscale airflow phenomena.  相似文献   

15.
利用中尺度非静力MM5模式研究不同初始扰动(误差)对2003年7月4—5日发生在江淮流域的一次梅雨锋暴雨数值预报不确定性的影响,并着重分析了提前36h定量降水的可预报性。结果表明,利用常规观测资料和NCEP/NCAR分析资料形成初始场的控制试验能够提前36h做出较好的模拟。扰动温度场的敏感性试验表明,扰动温度的均方差愈大,降水预报不确定性也愈大。误差演变特征和增长机制分析表明,误差增长具有升尺度特征,误差首先在对流层低层和高层增长,然后大值区向对流层中层扩展;湿降水过程是对流层中低层误差增长的主要机制;对流层高层的误差增长是大气干动力与湿过程共同作用的结果,前期以干过程为主,后期以湿过程为主。  相似文献   

16.
利用NCAR 和NOAA 发展的新一代中尺度模式WRF(Weather Research and Forecast),对2003年7 月上旬发生在我国淮河流域三个连续暴雨过程(7 月1—11 日)进行了数值模拟试验,研究的重点是了解不同水平分辨率(45、30、20 和10 km)对WRF 模拟结果的影响。模拟结果与观测的比较表明,WRF 模式能够合理地模拟不同时段的降水带以及平均环流形势的分布特征,对于区域平均等压面上的物理量也有较好的模拟性能。不同分辨率的模拟结果比较表明:不同分辨率对降水的模拟效果影响较大,提高模式水平分辨率有助于预报效果的改善,但高分辨率模拟的降水强度偏强,空报偏多;不同分辨率对环流形势的模拟效果影响不大,各个分辨率的低层风场误差都存在一个5~6 天的波动,并向模式的中高层传播,传播速度约为3 天。   相似文献   

17.
A high-resolution climate model simulation has been performed for the first time for Fiji’s climatology. The simulation involved a numerical experiment for a 10-year period (1975–1984), and was conducted at a horizontal resolution of 8 km in a stretched-grid configuration, which is currently the highest resolution at which a global climate model has been applied for regional climatological simulations. Analysis of model-generated data demonstrates a fairly good skill of the CSIRO Conformal-Cubic Atmospheric Model (C-CAM) in the simulation of the annual cycles of maximum and minimum temperatures and rainfall at selected locations in Fiji. The model has also successfully reproduced the pattern of maximum and minimum surface air temperatures between the western and central divisions of Fiji. Model simulation of spatial and temporal distribution of monthly total rainfall (10-year mean) over the main island of Viti Levu in Fiji shows that it reproduces the observed intraseasonal and interannual variability; the influence of the El Niño phenomena has also been captured well in the model-simulated rainfall.  相似文献   

18.
Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year-to-year variations in South China Sea summer monsoon onset at up to a three-month lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skillful prediction of Pacific sea surface temperatures associated with El NiÑo and La NiÑa. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by subseasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia.  相似文献   

19.
一个海气耦合模式对东亚夏季气候预测潜力的评估   总被引:1,自引:0,他引:1  
利用一个具有较高分辨率的海气耦合模式SINTEX-F(Scale Interaction Experiment-Frontier Research Center for Global Change coupled GCM)的多年回报结果,评估了该海气耦合模式对东亚区域,尤其是中国地区气候异常的预测潜力.与观测实况的比较结果表明:SINTEX-F模式对夏季降水、500 hPa高度场和地表气温都有一定的预测技巧,但是相比而言降水与高度场的回报技巧要高于地表气温;而且耦合模式对东亚地区气候异常的主要空间分布和年际变化特征也有较好的预测潜力,对500 hPa高度场效果较好;对降水异常的年际变化也有一定的预测潜力,尤其是我国中部地区效果较好,但是模式预测的降水异常的幅值较观测相对偏弱;此外对我国西部的极端气候也有一定的预测潜力.  相似文献   

20.
A significant negative correlation between the total rainfall averaged over South Korea and the Niño-3.4 index was found for the month of September. To find out the reason for this negative correlation, composite analyses were carried out for the highest and lowest 8 years of the Niño-3.4 index. During the strong El Niño year, an anomalous anticyclone occurs in the continental East Asia, while an anomalous cyclone emerges in the subtropical western Pacific. The resultant eastward pressure gradient force induces anomalous northerlies in most regions of East Asia, which produces anomalous cold and dry conditions throughout the troposphere between 120° and 140°E, reducing the Korean rainfall. It is also found that during El Niño year, tropical cyclones (TCs) tend to recurve far east offshore of Japan because the weakening of the western North Pacific subtropical high (WNPSH). During La Niña years, on the other hand, the strengthening and westward extension of the WNPSH render more TCs influencing the Korean peninsula. Therefore, the TC track changes associated with El Niño-Southern Oscillation is another contributor to change of the Korean rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号