首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on 15 Coupled Model Intercomparison Project (CMIP) phase 3 (CMIP3) and 32 CMIP phase 5 (CMIP5) models, a detailed diagnosis was carried out to understand what compose the biases in simulation of the Indian Ocean basin mode (IOBM) and its capacitor effect. Cloud-radiation-SST (CRS) feedback and wind-evaporation-SST (WES) feedback are the two major atmospheric processes for SST changes. Most CMIP models simulate a stronger CRS feedback and a weaker WES feedback. During boreal fall of the El Niño/Southern Oscillation developing year and the following spring, there are weak biases of suppressed rainfall anomalies over the Maritime Continent and anomalous anticyclone over South Indian Ocean. Most CMIP models simulate reasonable short wave radiation (SWR) and weaker latent heat flux (LHF) anomalies. This leads to a weak bias of atmospheric processes. During winter, however, the rainfall anomalies are stronger due to west bias, and the anomalous anticyclone is comparable to observations. As such, most models simulate stronger SWR and reasonable LHF anomalies, leading to a strong bias of atmospheric processes. The thermocline feedback is stronger in most models. Though there is a deep bias of climatology thermocline, most models capture reasonable sea surface height-induced SST anomalies. Therefore, the effect of oceanic processes offset the weak bias of atmospheric processes in spring, and the tropical Indian Ocean warming persists into summer. However, anomalous northwest Pacific (NWP) anticyclone is weaker due to weak and west bias of the capacitor effect. The unrealistic western Pacific SST anomalies in models favor the westward extension of Rossby wave from the Pacific, weakening the effect of Kelvin wave from the Indian Ocean. Moreover, the western Pacific warming forces the NWP anticyclone move farther north than observations, suggesting a major forcing from the Pacific. Compared to CMIP3, CMIP5 models simulate the feedbacks more realistically and display less diversity. Thus, the overall performance of CMIP5 models is better than that of CMIP3 models.  相似文献   

2.
Chao He  Tianjun Zhou 《Climate Dynamics》2014,43(9-10):2455-2469
Using the output of the Atmospheric Model Intercomparison Project (AMIP) experiments of 28 models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), the models’ performances in the simulation of the two dominant interannual variability modes of the Western North Pacific Subtropical High (WNPSH) are investigated. In the observation, the positive phases of these two modes feature an anomalous anticyclone over the western North Pacific (WNP), but the first mode (M1) is closely connected with the sea surface temperature (SST) anomalies over the tropical Indian Ocean (TIO), the maritime continent (MC) and the equatorial central Pacific (CP), while the second mode (M2) is closely connected with the SST anomalies over the WNP. The M1 is well captured by the CMIP5–AMIP models forced by the historical SST, suggesting the M1 is an SST-forced mode. The CMIP5–AMIP models capture the close relationship of the M1 with the SST anomalies over the TIO, the MC and the CP. The forcing mechanisms of M1 in the CMIP5–AMIP models are consistent with the observation, including a Kelvin wave emanating from the TIO and a local Hadley circulation originating from the MC. Different from the high reproducibility of the M1, the M2 is only moderately reproduced by the multi-model ensemble (MME) mean of the CMIP5–AMIP models. The simulated anomalous WNPSH of the M2 is weaker and shifts southwestward in the MME and many individual models compared to the observation. Among the five anomalous WNPSH years associated with the M2, the MME captures the anomalous WNPSH only in 1993 and 1994 but not in 1980, 1981 and 1987. The partial reproducibility of the M2 by the CMIP5–AMIP models suggests the M2 is neither a pure atmospheric internal mode nor a pure SST-forced mode. The observed close relationship between the anomalous WNPSH and the WNP SST anomalies is underestimated by the CMIP5–AMIP models, suggesting the local SST–WNPSH relationship may depend on the air–sea interaction over the WNP.  相似文献   

3.
Using observation data and outputs from the “twentieth-century climate in coupled models” (20c3m) control runs of coupled general circulation models submitted to the Coupled Model Intercomparison Project, phase 3 (CMIP3), the ability of CMIP3 models to simulate the Indian Ocean subtropical dipole (IOSD) and its influence on the rainfall anomaly over the southern African region is investigated. Many models simulate the IOSD, but the location and shape of the sea surface temperature anomaly vary among models. This model bias is closely linked to the bias in simulating the anomalous strengthening and southward shift of the subtropical high. Almost all models fail to simulate the rainfall anomaly associated with the IOSD owing to the inaccurate simulation of the location of sea surface temperature and sea level pressure anomalies.  相似文献   

4.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

5.
Observational data show that the dominant mode of the boreal winter rainfall anomalies in the tropical Indo-Western Pacific (IWP) is a west-east dipolar pattern, which is called the Indo-Western Pacific Dipole (IWPD) mode and is related to El Niño-Southern Oscillation. It is found that corresponded to the IWPD mode is a new atmospheric teleconnection pattern—a wave train pattern emitted from the IWP toward Asia and the northwest Pacific in winter. During the positive (negative) phase of the IWPD, the teleconnection pattern features the negative (positive) anomalies of 200-hPa geopotential height (H200) centered at 30°N, 110°E and the positive (negative) anomalies of H200 centered at 45°N, 140°E. The teleconnection pattern represents the dominant mode of the boreal winter H200 anomaly over Asia. A series of simple atmospheric model experiments are performed to confirm that this winter teleconnection pattern is induced by the heating anomalies associated with the IWPD, and the heating anomalies over the equatorial central Pacific are not important to this teleconnection pattern from the IWP toward Asia and the northeast Pacific. The IWPD is strengthened after the climate regime shift of the 1970s, which leads to a stronger teleconnection pattern.  相似文献   

6.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

7.
The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don’t. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than −1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.  相似文献   

8.
The central United States experienced a cooling trend during the twentieth century, called the “warming hole,” most notably in the last quarter of the century when global warming accelerated. The coupled simulations of the models that participated in the Coupled Model Intercomparison Project, Phases 3 and 5 (CMIP3/5), have been unable to reproduce this abnormal cooling phenomenon satisfactorily. An unrealistic representation of the observed phasing of the Pacific Decadal Oscillation (PDO)—one of the proposed forcing mechanisms for the warming hole—in the models is considered to be one of the main causes of this effect. The CMIP5’s uncoupled Atmospheric Model Intercomparison Project (AMIP) experiment, whose duration approximately coincides with the peak warming hole cooling period, provides an opportunity, when compared with the coupled historical experiment, to examine the role of the variation in Pacific Ocean sea surface temperature (SST) in the warming hole’s formation and also to assess the skill of the models in simulating the teleconnection between Pacific SST and the continental climate in North America. Accordingly, this study compared AMIP and historical runs in the CMIP5 suite thereby isolating the role of SST forcing in the formation of the warming hole and its maintenance mechanisms. It was found that, even when SST forcing in the AMIP run was “perfectly” prescribed in the models, the skill of the models in simulating the warming hole cooling in the central United States showed little improvement over the historical run, in which SST is calculated interactively, even though the AMIP run overestimated the anti-correlation between temperature in the central United States and the PDO index. The fact that better simulation of the PDO phasing in the AMIP run did not translate into an improved summer cooling trend in the central United States suggests that the inability of the coupled CMIP5 models to reproduce the warming hole under the historical run is not mainly a result of the mismatch between simulated and observed PDO phasing, as believed.  相似文献   

9.
El Niño–Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.  相似文献   

10.
The performance of 21 Coupled Model Intercomparison Project Phase 5 (CMIP5) models in the simulation of the Indian Ocean Dipole (IOD) mode is evaluated. Compared to CMIP3, CMIP5 models exhibit a similar spread in IOD intensity. A detailed diagnosis was carried out to understand whether CMIP5 models have shown improvement in their representation of the important dynamical and thermodynamical feedbacks in the tropical Indian Ocean. These include the Bjerknes dynamic air-sea feedback, which includes the equatorial zonal wind response to sea surface temperature (SST) anomaly, the thermocline response to equatorial zonal wind forcing, the ocean subsurface temperature response to the thermocline variations, and the thermodynamic air-sea coupling that includes the wind-evaporation-SST and cloud-radiation-SST feedback. Compared to CMIP3, the CMIP5 ensemble produces a more realistic positive wind-evaporation-SST feedback during the IOD developing phase, while the simulation of Bjerknes dynamic feedback is more unrealistic especially with regard to the wind response to SST forcing and the thermocline response to surface wind forcing. The overall CMIP5 performance in the IOD simulation does not show remarkable improvements compared to CMIP3. It is further noted that the El Niño-Southern Oscillation (ENSO) and IOD amplitudes are closely related, if a model generates a strong ENSO, it is likely that this model also simulates a strong IOD.  相似文献   

11.
The relationship between mid-latitude tropospheric warming (MLTW) and the tropical sea surface temperatures (SSTs) in June–August (JJA) of 2010 has been investigated using an atmospheric general circulation model forced with the evolving observed SSTs. The simulation results indicate that the SST anomalies (SSTAs) in the equatorial Pacific in JJA 2010, indicating La Niña condition, did not contribute simultaneously to produce the MLTW in JJA 2010, and, instead, the SSTAs in the northern subtropics (the whole latitudinal band between 10°N and 30°N) contributed. However, it is shown by the results that enough magnitude of the atmospheric height anomalies over the northern mid-latitude was not reproduced by the SSTAs over the northern subtropical Indo-western Pacific (IWP) alone or over the northern subtropical Atlantic alone. It implies that both the SSTA over the northern subtropics of IWP and Atlantic were necessary to reproduce the MLTW. The possible role of convective activity for the MLTW is also discussed.  相似文献   

12.
The South Pacific Convergence Zone (SPCZ) is evaluated in historical simulations from 26 Coupled Model Intercomparison Project Phase 5 (CMIP5) models, and compared with previous generation CMIP3 models. A subset of 24 CMIP5 models are able to simulate a distinct SPCZ in the December to February (DJF) austral summer, although the position of the SPCZ in these models is too zonal compared with observations. The spatial pattern of SPCZ precipitation is improved in CMIP5 models relative to CMIP3 models, although the spurious double ITCZ precipitation band in the eastern Pacific is intensified in many CMIP5 models. All CMIP5 models examined capture some interannual variability of SPCZ latitude, and 19 models simulate a realistic correlation with El Niño–Southern Oscillation. In simulations of the twenty-first century under the RCP8.5 emission scenario, no consistent shift in the mean position of the DJF SPCZ is identified. Several models simulate significant shifts northward, and a similar number of models simulate significant southward shifts. The majority of CMIP5 models simulate an increase in mean DJF SPCZ precipitation, and there is an intensification of the eastern Pacific double ITCZ precipitation band in many models. Most models simulate regions of increased precipitation in the western part of the SPCZ and near the equator, and regions of decreased precipitation at the eastern edge of the SPCZ. Decomposition of SPCZ precipitation changes into dynamic and thermodynamic components reveals predominantly increased precipitation due to thermodynamic changes, while dynamic changes lead to regions of both positive and negative precipitation anomalies.  相似文献   

13.
The Indian summer monsoon of 1982 and 1997 depicts disparities, however, maximum sea surface temperature anomaly over Niño 3 region is observed in the following winter of both the years. The inter-annual variation of sea surface temperature anomaly shows maximum peak during 1982/83 and 1997/98 El Niño events. The inter-annual variation of multivariate ENSO index also supports the above observation. The analyses of the entire tropical Pacific basin including the equatorial region reveal an anomalous behavior of the mean sea level pressure (MSLP) and the convective activities. The observations further reveal that the negative anomaly in monsoon rainfall over India prevails throughout the monsoon season except for the month of August in 1982, while in the year 1997 the monsoon rainfall anomaly shows random variations. The comparison between the summer monsoon rainfall of 1982 and 1997 depicts that the magnitude of the positive anomaly is same in the month of August. The condition over tropical Pacific during 1982/83 and 1997/98 has been investigated through the variation of outgoing long wave radiation (OLR), MSLP and pressure vertical velocity. The time–longitude plots of OLR and MSLP reveal the changes in pressure distribution and convective pattern over the tropical equatorial Pacific. The zonal and meridional cross section of pressure vertical velocity over the tropical Pacific and tropical Indian Ocean facilitates to understand the strength of the vertical motion during the monsoons of 1982 and 1997.  相似文献   

14.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

15.
Freshwater flux (FWF) directly affects sea surface salinity (SSS) and hence modulates sea surface temperature (SST) in the tropical Pacific. This paper quantifies a positive correlation between FWF and SST using observations and simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to analyze the interannual variability in the tropical Pacific. Comparisons among the displacements of FWF, SSS and SST interannual variabilities illustrate that a large FWF variability is located in the west-central equatorial Pacific, covarying with a large SSS variability, whereas a large SST variability is located in the eastern equatorial Pacific. Most CMIP5 models can reproduce the fact that FWF leads to positive feedback to SST through an SSS anomaly as observed. However, the difference in each model's performance results from different simulation capabilities of the CMIP5 models in the magnitudes and positions of the interannual variabilities, including the mixed layer depth and the buoyancy flux in the equatorial Pacific. SSS anomalies simulated from the CMIP5 multi-model are sensitive to FWF interannual anomalies, which can lead to differences in feedback to interannual SST variabilities. The relationships among the FWF, SSS and SST interannual variabilities can be derived using linear quantitative measures from observations and the CMIP5 multi-model simulations. A 1 mm d-1 FWF anomaly corresponds to an SSS anomaly of nearly 0.12 psu in the western tropical Pacific and a 0.11°C SST anomaly in the eastern tropical Pacific.  相似文献   

16.
孙丹  薛峰  周天军 《大气科学进展》2013,30(6):1732-1742
Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.  相似文献   

17.
用偏最小二乘(Partial Least Square,PLS)回归方法分析了 1979~2018年影响亚马逊旱季(6~8月)降水年际变率的热带海面温度模态.第一海面温度模态解释了总方差的64%,主要表现为前期亚马逊雨季(12月至次年2月)至旱季(6~8月)热带东太平洋La Ni?a型海面温度异常演变.12月至次年2月...  相似文献   

18.
The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space–time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.  相似文献   

19.
The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways(RCP) scenario in which anthropogenic emissions continue to rise throughout the 21 st century(i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5(CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May.A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore,and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific,enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal(near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations.  相似文献   

20.
ENSO representation in climate models: from CMIP3 to CMIP5   总被引:4,自引:2,他引:2  
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号