首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A white dwarf rotating at a maximal angular velocity can take a form of a triaxial ellipsoid due to the rotation and to the presence of mountains on its surface. Such an object emits gravitational waves at a frequency of 2, where is the angular velocity of rotation, and the source of the radiated energy is the rotational kinetic energy. It is shown that the gravitational waves from rapidly rotating white dwarfs at an average distance of 50 pc from an terrestrial observer have an amplitude on the order of 10–24, so they can be detected by the new generation of detectors. Gravitational radiation from a pulsating white dwarf with a rough surface is also examined. It is shown that quasiradial pulsations of a white dwarf are long-lived; that is, once perturbed, a white dwarf will emit gravitational waves during all lifetime.Translated from Astrofizika, Vol. 48, No. 1, pp. 69–78 (February 2005).  相似文献   

2.
Carbon-oxygen white dwarfs may be the progenitors of type-I supernovae. Spherically-symmetric models of such dwarfs have been evolved from an artificial core incineration. The convectively unstable incinerated region was allowed to grow at a velocity prescribed by the mixing-length theory of convection. The mixing length can be varied to give different cases. In all the cases considered the dwarfs exploded and were totally disrupted. The calculations were stopped after the dwarf matter had gone into homologous expansion. The model with the best estimated mixing length incinerated 0.8M . The energy released in burning this amount of carbon-oxygen to56Ni provides a disrupted dwarf with velocities suitable for type-I supernovae.Research supported by the Natural Sciences and Engineering Research Council.  相似文献   

3.
A search for the molecular12C13C isotopic bands in two white dwarfs is described. Spectroscopic observations of the two carbon band white dwarfs, BPM 27606 (=2153-51) andL 879-14 (=0435-08) have been obtained. These data have a resolution slightly better than 2 Å, higher than usually employed for white dwarfs and cover the v=1 vibrational swan bands of the C2 molecule where the isotopic shift is of order 8 Å. The isotopic bands have not been detected. However, upper limits to the12C:13C abundance ratio derived from the data yield12C:13C>40 for BPM 27606 and12C:13C>8 for L879-14. If these ratios are representative of the material in the interiors of the carbon band white dwarfs and taking the low upper limits on the N and O abundances relative to C, this is consistent with the carbon having been formed by the 3 process and not having undergone any subsequent mixing with H-rich material. In addition, the C2 vibrational bandheads are blueshifted, most probably by pressure shifts. This shows that the employment of higher resolutions reveals additional physical effects in the spectra of the carbon band white dwarfs that may become important for interpreting the cool end of the helium rich white dwarf sequence.  相似文献   

4.
5.
Strange quark stars with a crust and strange dwarfs consisting of a compact strange quark core and an extended crust are investigated in terms of a bag model. The crust, which consists of atomic nuclei and degenerate electrons, has a limiting density of cr=drip=4.3·1011 g/cm3. A series of configurations are calculated for two sets of bag model parameters and three different values of cr (109 g/cm3 cr drip) to find the dependence of a star's mass M and radius R on the central density. Sequences of stars ranging from compact strange stars to extended strange dwarfs are constructed out of strange quark matter with a crust. The effect of the bag model parameters and limiting crust density cr on the parameters of the strange stars and strange dwarfs is examined. The strange dwarfs are compared with ordinary white dwarfs and observational differences between the two are pointed out.  相似文献   

6.
The existence of condensed carbon in the form of liquid droplets and graphite grains is found in white dwarf atmospheres with parametersg=108 cm s–2, H/He10–3, andT eff6000 K on the basis of model atmospheres techniques. It is shown that the condensation layers are dynamically stable and, consequently, that white dwarfs cannot supply the condensed particles to the interstellar medium. Possible observable effects are considered.  相似文献   

7.
It is known that intermediate and low-mass stars evolve finally to white dwarfs of mass characteristically centred around 0.6M . The observed luminosity distribution and the theoretical cooling curves of such white dwarfs are used in this work to estimate the rate of formation of these and, hence, of their progenitors (although not uniquely) in the solar neighbourhood as a function of time. It is found that the star formation rate has remained fairly constant over the past 10–12 billion years, and that the observed number density of the local white dwarfs match quite well with the one expected from the mass functions of the local stars.  相似文献   

8.
We study the evolution of solid, CO white dwarfs after explosive carbon ignition at central densities around 1010 g cm–3 triggered by steady accretion in a close binary system, in order to elucidate whether these stars can collapse to form a neutron star. We show that as long as the velocity of the burning front remains below a critical value of 0.006c s (60 km s–1), gravitational collapse is the final fate. These calculations support the accretion-induced collapse (AIC) scenario for the origin of a fraction of low-mass X-ray binaries.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

9.
We have studied the thermonuclear runaways which develop on white dwarfs of 1.205M and 1.358M accreting hydrogen rich material at 10–10 M yr–1. It is found that ignition of this material occurs at densities in excess of about 104 gm cm–3 and that the critical accumulated mass required to initiate the runaway is 0.7(1.5)×10–4 M for a 1.358(1.205)M white dwarf.  相似文献   

10.
Thermal and electrical conductivities due to electron scattering on phonons are calculated for degenerate cores of white dwarfs and envelopes of neutron stars for wide ranges of density, temperature and ion charge. In the stellar zones, in which T pi(Z1/3e2/F) (piis the ion plasma frequency and F the Fermi velocity of electrons), the main contribution into scattering comes from the Umklapp processes. In the zones with lowerT, the Umklapp processes are frozen out, that results in a sharp growth of electrical and thermal conductivities. This, for instance, should make nuclear burning more stable in such zones.  相似文献   

11.
I compute the maximum number of observable brown dwarfs for various infrared surveys by combining the maximum possible Oort limit (0.1 missing Mpc–3 with all possible brown dwarf mass and age distributions. This approach shows what limits will be placed on the contribution of brown dwarfs to any possible missing mass if no brown dwarfs are observed. I consider brown dwarfs with masses of 0.01—0.08 M and ages of 109—1010 years.The full range of predicted numbers of brown dwarfs above 6 times the noise of each of the below surveys is: IRAS Point Source Catalog 0.02—6 IRAS Faint Source Catalog |b| > 10° 0.05—16 ISO (2 week 12µm survey) 0.15—80 SIRTF (2 week 12µm survey) 2.50—1600 WIRE (4 month 12µm survey) 21.80—6000 DENIS (half sky) |b| > 10° 0.00—2000 2MASS (full sky) |b| > 10° 0.00—8000A failure to find brown dwarfs in the IRAS FSC would just barely rule out about half of the mass—age range for Oort limit total masses. A failure to find brown dwarfs in 2MASS/DENIS would rule out roughly the same mass—age range, but would set a limit of 0.1—0.01 times the Oort mass in that mass—age region. No limits would be set for the other half of the mass—age range since both IRAS and 2MASS/DENIS have insufficient sensitivity for brown dwarfs with T < 750 K.A failure to find brown dwarfs with ISO would rule out almost all of the mass—age range for Oort limit total masses, but would not set a significantly lower limit to the brown dwarf mass limit. A failure to find brown dwarfs with SIRTF or WIRE would rule out the entire mass—age range for Oort limit total masses and set an upper limit of 0.1—0.001 times the Oort mass.To date, about 18% of the IRAS FSC has been searched down to 6, and no brown dwarfs have been found. This sets a 95% upper limit of 3 in 18% of the sky, or 13 in the entire FSC for |b| > 10°. To begin to set useful limits from 2MASS or DENIS, approximately 400 square degrees needs to be analyzed. To date, only a few square degrees of results from the 2MASS prototype camera have been examined, with no brown dwarfs found so far.  相似文献   

12.
The structure and stability of rapidly uniformly rotating supermassive stars is investigated using the full post-Newtonian equations of hydrodynamics. The standard model of a supermassive star, a polytrope of index three, is adopted. All rotation terms up to and including those of order 4, where is the angular velocity, are retained. The effects of rotation and post-Newtonian gravitation on the classical configuration are explicitly evaluated and shown to be very small. The dynamical stability of the model is treated by using the binding energy approach. The most massive objects are found to be dynamically unstable when =1/c 2.p c / c 2.2 × 10–3, wherep c and c are the central pressure and density, respectively. Hence, the higher-order terms considered in this analysis do not appreciably alter the previously known stability limits.The maximum mass that can be stabilized by uniform rotation in the hydrogen-burning phase is found to be 2.9×106 M , whereM is the solar mass. The corresponding nuclear-generated luminosity of 6×1044 erg/sec–1 is too small for the model to be applicable to the quasi-stellar objects. The maximum kinetic energy of a uniformly rotating supermassive star is found to be 3×10–5 Mc 2, whereM is the mass of the star. Masses in excess of 1010 M are required if an adequate store of kinetic energy is to be made available to a pulsar like QSO. However such large masses have rotation periods in excess of 100 yr and thus could not account for any short term periodic variability. It is concluded then that the uniformly rotating supermassive star does not provide a suitable base for a model of a QSO.  相似文献   

13.
In the present paper we have considered the problem of determining the equilibrium structure of differentially rotating stars in which the angular velocity of rotation varies both along the axis of rotation and in directions perpendicular to it. For this purpose, a generalized law of differential rotation of the type 2 =b 0+b 1 s 2+b 2 s 4+b 3 z 2+b 4 z 4+b 5 z 2 s 2 (here is a nondimensional measure of the angular velocity of a fluid element distants from the axis of rotation andz from the plane through the centre of the star perpendicular to the axis of rotation, andb's are suitably chosen parameters) has been used. Whereas Kippenhahn and Thomas averaging approach has been used to incorporate the rotational effects in the stellar structure equations, Kopal's results on Roche equipotentials have been used to obtain the explicit form of the stellar structure equations, which incorporate the rotational effects up to second order of smallness in the distortion parameters. The method has been used to compute the equilibrium structure of certain differentially rotating polytropes. Certain differentially rotating polytropes. Certain differentially rotating models of the Sun have also been computed by using this approach.  相似文献   

14.
The consequences of gas-liquid phase transitions in the core of hot white dwarf stars are discussed. Expressions for the latent heat and the liquefaction curveT l =T l (Q) are obtained. Then amodel for a hot white dwarf is introduced and the corresponding liquefaction sequences are built on the H-R diagram; relations luminosity-central temperature and effective temperature-central temperature are also given for liquefying white dwarfs.Finally the cooling curves are obtained for such stars taking into account the effect of latent heat emission.Our results seem to suggest a possible identification of the central stars of planetary nebulae as hot liquefying white dwarfs.  相似文献   

15.
It is pointed out that, because of the large Faraday rotation an outlet of linear polarization from the photosphere of a white dwarf is hampered. In accordance with this fact it is proposed to distinguish two types of magnetic white dwarfs. The first type (its representative is Grw 70°8247) has a linear polarization which is comparable in magnitude with the circular one. Polarization of radiation from the white dwarfs of the first type cannot arise in the photosphere. It arises in the corona of the star either as a result of cyclotron emission of hot electrons (T~106 K) or as a result of scattering of slightly polarized emission from the photosphere in the corona. For the first type dwarfs such magnetic fields are required thatω B ωopt, i.e.B(1?3)×108G. The white dwarfs of the second type (its representative is G 99-37) have their linear polarization much smaller than the circular one. Polarization of these white dwarfs can arise as a result of the transfer of radiation in the nonisothermal photosphere. Magnetic fields required for the second type can be much smaller:B cos γ=(1?10)×106 G. It is shown that the photospheric model allows to obtain the quantitative accordance of the theory with all the observational data for G 99-37 and is not in accordance with the data for Grw 70°8247, at the same time the model with cyclotron emission from the corona explains the magnitude of both linear and circular polarization and their wavelength dependence for Grw 70°8247.  相似文献   

16.
The temperatures, radii, and masses of 81 He-rich white dwarfs are calculated from photometric data. It is shown that, on the average, they are less massive than DA white dwarfs: 70% of He-rich white dwarfs have masses<0.55M . Space density and birth-rate for different mass groups of H-rich and He-rich white dwarfs are obtained. Birth-rate is 1×10?12 pc?3 yr?1 and 1.5×10?12pc?3yr?1 for He-rich and H-rich white dwarfs, respectively. The mean mass of nascent white dwarfs is about 0.55M . It is shown thatV Tand its dispersion σ are correlated with the mass of white dwars, and from this progenitors' masses — of different mass groups of white dwarfs are estimated.  相似文献   

17.
Relativistic, isentropic, homogeneous models are constructed by a method that automatically detects instabilities, and evolutionary tracks of central conditions are shown on a (T, ) diagram. Models heavier than 20M become unstable because of pair creation. Iron photodisintegration causes instability in the mass range between 1.5M and 20M . General relativistic effects bring about the onset of instability in models of 1.2–1.5M when the central density is about 1010 g/cm3. Lighter models become white dwarfs. It is pointed out that general relativistic instability will prevent the formation of neutron stars through hydrostatic evolution and may be relevant in setting off low-mass supernovae.  相似文献   

18.
The neutrino luminosity by the ordinary URCA process in a strongly magnetized electron gas is computed. General formulae are presented for the URCA energy loss rates for an arbitrary degree of degeneracy. Analytic expressions are derived for a completely degenerate, relativistic electron plasma in the special case of neutron-proton conversion. Numerical results are given for more general cases.The main results are as follows: the URCA energy loss rates are drastically reduced for the regime of great degeneracy by a factor up to 10–3 for 1, andT 910, where =H/H q ,H q =m 2 c 3/eh=4.414×1013 G. In the non-degenerate regime the neutrino luminosity is enhanced approximately linearly with for the temperature range 1T 910. Possible applications to white dwarfs and neutron stars are briefly discussed.We have been recently informed that in Gamow home-dialect (Odessa dialect) URCA means thief — (Private communication from Prof. G. Wataghin).  相似文献   

19.
Molecular dissociation equilibrium calculations were done for the model atmospheres of DA and non-DA white dwarfs. Our calculations show that He 2 + and HeH+ appear as most abundant molecules in the atmospheres of non-DA white dwarfs while H2 and H 2 + are most abundant molecules in DA white dwarfs. It is suggested that these molecules should be searched for in the atmospheres of white dwarfs.  相似文献   

20.
We report the results of photometric observations of a number of magnetic white dwarfs in order to search for photometric variability in these stars. These V-band observations revealed significant variability in the classical highly magnetized white dwarf GRW+70?8247 with a likely period from several days to several dozen days and a half-amplitude of about 0. m 04. Our observations also revealed the variability of the well-known white dwarf GD229. The half amplitude of its photometric variability is equal to about 0. m 005, and the likely period of this degenerate star lies in the 10–20 day interval. This variability is most likely due to the rotation of the stars considered.We also discuss the peculiarities of the photometric variability in a number of other white dwarfs. We present the updated “magnetic field–rotation period” diagram for the white dwarfs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号