首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-latitude cloud (HLC) MBM 7 has been observed in the 21 cm H I line and the 12CO(1-0) and 13CO(1-0) lines with similar spatial resolutions. The data reveal a total mass approximately 30 M solar for MBM 7 and a complex morphology. The cloud consists of a cold dense core of 5 M solar surrounded by atomic and molecular gas with about 25 M solar, which is embedded in hotter and more diffuse H I gas. We derive a total column density N(H I + 2H2) of 1 x 10(21) cm-2 toward the center and 1 x 10(20) cm-3 toward the envelope of MBM 7. The CO line indicates the existence of dense cores [n(H2) > or = 2000 cm-3] of size (FWHM) approximately 0.5 pc. The morphology suggests shock compression from the southwest direction, which can form molecular cores along the direction perpendicular to the H I distribution. The H I cloud extends to the northeast, and the velocity gradient appears to be about 2.8 km s-1 pc-1 in this direction, which indicates a systematic outward motion which will disrupt the cloud in approximately 10(6) yr. The observed large line widths of approximately 2 km s-1 for CO suggest that turbulent motions exist in the cloud, and hydrodynamical turbulence may dominate the line broadening. Considering the energy and pressure of MBM 7, the dense cores appear not to be bound by gravity, and the whole cloud including the dense cores seem to be expanding. The distance to HLCs suggest that they belong to the galactic plane, since the scale height of the cloud is < or approximately equal to 100 pc. Compared to the more familiar dense dark clouds, HLCs may differ only in their small mass and low density, with their proximity reducing the filling factor and enhancing the contrast of the core and envelope structure.  相似文献   

2.
High resolution strip maps of CS (J=1–0) and H51 line emission across the Orion bright bar are presented. They reveal the existence of a high density molecular layer (molecular sheet) plane parallel to the ionization front. This molecular sheet is redshifted relative to the ambient molecular cloud by about 2 km s–1. The rapid decrease of the CS emission at about 50 arc sec from the bar suggests that a shock front exists here and the sheet is a post shock layer.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.This work was carried out under the common use observation program at the Nobeyama Radio Observatory (NRO). NRO, a branch of the Tokyo Astronomical Observatory, University of Tokyo, Japan, is a cosmic radio observing facility open to outside users.  相似文献   

3.
L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.  相似文献   

4.
The infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with the SEST (Cerro La Silla, Chile) telescope on the 2.6-mm 12CO spectral line and with SIMBA on the 1.2-mm continuum are given. The 12CO observations revealed the existence of several molecular clouds, two of which (clouds 1 and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω = 4.6 · 10−14 s−1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has also been found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colors typical for a non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shows the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that the possibility that this extension might also be rotating like cloud 2 is not excluded. In the vicinity of these extensions there are condensations resembling HH objects. Published in Astrofizika, Vol. 51, No. 1, pp. 29–40 (February 2008).  相似文献   

5.
The cluster of galaxies A754 is undergoing a merger of several large structural units. X-ray observations show the nonequilibrium state of the central part of the cluster, in which a cloud of cold plasma ~500 kpc in size was identified amid the hotter cluster gas. The X-ray image of A754 exhibits a brightness discontinuity, which can be interpreted as a shock wave in front of a moving cloud of dense gas. The shock parameters are determined from the jump in intergalactic gas density using the ROSAT image. The estimated Mach number is M1 = 1.71 ?0.24 +0.45 at a 68% confidence level.  相似文献   

6.
We use numerical N -body simulations of the Orion Nebula Cluster (ONC) to investigate the possibility of substructure in its formation. There is no substructure apparent in the ONC today. However, unless there was a remarkable degree of homogeneity in the molecular cloud from which it formed, it seems unlikely that this would have been true of the cluster in its earliest phase. More plausibly, the early structure of the cluster would have consisted of groups or clumps of subclusters, following the structure of the cloud itself. We have explored the extent to which such subclusters could subsequently have merged, and find that the age of the cluster is a critical factor. The most inhomogeneous initial conditions, comprising a small number of subclusters with many members, are ruled out by an age of 2 Myr or less. There is a considerable amount of freedom in the other direction, however, which suggests that fragmentation in the original cloud is more likely to have been on the scale of small clumps, each producing fewer than 100 stars. These initial subclusters could have been very dense – perhaps two or three orders of magnitude more dense than the core of the ONC today.  相似文献   

7.
The evolution of the different chemical species are followed in a model of contracting interstellar cloud. The central density increases from n = 10 cm–3 diffuse initial cloud model to a dense cloud with central density number of n >- 105 cm–3 after a time of 1.2 × 107 yr. A network of 622 reactions has been involved. The chemistry of the cloud is integrated simultaneously with the hydrodynamic equations of contraction.The results predict that the different molecular species increase in abundance as the contraction proceeds. The species which enhance significantly are CO, HCO, CS and NO. The fractional abundances of many of the other molecular species increase distinctly with contraction, e.g. CH, C2H, CN, SO2, CO2, H2O, C2, NH3, HCN, SO, OCS and SN. The transformation of the initial diffuse cloud model with small abundances of molecular species to a dense molecular cloud with enhancement of the different molecular species is confirmed. The results predict good agreements of our results with both the observations and other theoretical studies.  相似文献   

8.
We show that, in a cold plasma, one of the slow waves of the linear system is a Jordan mode, for which the density grows linearly with time. Although this mode is not present if the temperature is finite, slow waves still generate large density perturbations when the thermal sound speed is small compared with that of the fast and Alfvén waves. Numerical calculations show that non-linear steepening of a fast wave with finite but modest amplitude can readily excite this mode as long as the angle between its direction of propagation and the magnetic field is neither too large nor too small. This produces persistent inhomogeneities with a large density contrast. We suggest that this mechanism is responsible for the clumps identified in CO maps of the Rosette molecular cloud and similar ones in other giant molecular clouds. The same process may also be responsible for the formation of dense cores in the clumps.  相似文献   

9.
Towards the high-latitude cloud MBM 40, we identify 3 dense molecular cores of M0.2–0.5 M, and sizes of 0.2 pc in diameter embedded in the H I cloud of 8 M which is observed to be extended along the northeast–southwest direction. The molecular cloud is located almost perpendicularly to the H I emission. We confirm the previous result of Magnani et al. that MBM 40 is not a site for new star formations. We found a very poor correlation between the H I and the IRAS 100 μm emissions, but the CO (1–0) and 100 μm emissions show a better correlation of WCO/I100=1±0.2 K km s−1 (MJy sr−1)−1. This ratio is larger by a factor of ≥5 than in dense dark clouds, which may indicate that the CO is less depleted in MBM 40 than in dense dark clouds.  相似文献   

10.
We propose a model for the bolometric light curve of a type-Ia supernova (SN Ia) that explodes in a dense circumstellar (CS) envelope. Our modeling of the light curves for SN 2002ic and SN 1997cy shows that the densities of the CS envelopes around both supernovae at a radius of ~7×1015 cm are similar, while the characteristic ejection time for this envelope around SN 1997cy does not exceed 600 yr. We analyze two possible evolutionary scenarios that could lead to the explosion of a SN Ia inside a dense C S hydrogen envelope: accretion onto a CO white dwarf in a symbiotic binary and the evolution of a single star with an initial mass of about 8M. If the hypothesis of a SN Ia explosion in a dense CS envelope is correct for SN 2002ic and SN 1997cy, then we must assume that the the rapid loss of the red-supergiant envelope in several hundred years and the subsequent explosion of the CO white dwarf are synchronized by some physical mechanism. This mechanism may be related to the contraction of the white dwarf as it approaches the Chandrasekhar limit. We show that the formation of a (super-)Chandrasekhar mass due to the merger of a CO white dwarf and the CO core of a red supergiant followed by a supernovae explosion is unlikely, since this mechanism does not provide the required synchronization of the rapid mass loss and the explosion.  相似文献   

11.
CS(J=1–0), C34S(J=1–0), and CH3OH(10–00A and E) emission lines in the core region of molecular cloud associated with NGC 7538 have been surveyed at angular resolution of 33. Distribution of CS column density shows two prominent peaks. Both blue and red wings in CS line are most prominent at 30 northwest of IRS 11.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.This work was carried out under the common use observation program at the Nobeyama Radio Observatory (NRO). NRO, a branch of the Tokyo Astronomical Observatory, University of Tokyo, is a cosmic radio observing facility open to outside users.  相似文献   

12.
《New Astronomy》2007,12(2):111-116
Near-infrared observations indicate that three H2 outflows and their driving sources are present in the globule IC 1396 W, where the existence of molecular outflows has also been suggested by some authors. We made the first CO(1-0) map of IC 1396 W, and found that its CO molecular cloud may consist of three physically distinct components with different velocities. We detected neither molecular outflows nor the dense cores associated with candidate driving sources. One possible reason is that CO(1-0) and its isotopes cannot trace high density gas, and another is that the beam of our observation is too large to observe them. The CO cloud may be one part of the natal molecular cloud of IC 1396 W, in the process of disrupting and blowing away. The CO cloud seems to be in the foreground of the H2 outflows.  相似文献   

13.
A classification of the observational data on NGC 2264 is presented. Optical, infrared and radio data for the Hii region are tabulated, and maps of the molecular cloud structure are shown. The observations of the NGC 2264 star cluster are also summarized. The role of star formation in this young region is briefly assessed.  相似文献   

14.
房敏  姚永强 《天文学报》2004,45(1):1-15
给出恒星形成区GGD12-15的宽波段JHK和窄波段H2v=1-0S(1)近红外成像观测.观测图像揭示了致密的年轻红外星团和与红外源成协的红外星云,并发现了以H2发射结表征的星团外流活动.大多数红外点源在光学波段不可见;对76颗红外点源的JHK′测光结果显示,有32颗具有红外超,其中5颗表现原恒星特征,表明分子云中的恒星形成活动很活跃.以B8光谱型作为大质量星分界,由色星等图估计出大质量星所占星团比例为-10%~26%.GGD12—15星团的K′星等分布的峰值位于15.0mag,并在13.0mag-16.0mag平坦分布;[H—K′]色分布的峰值出现在-0.7mag,在此以上更红的星团成分占70%.在GGD12-15区新发现的氢分子发射结集中在星团中心领域,其空间分布明显与剧烈的恒星形成活动相关;有5个发射结位于分子外流的中心区域,暗示其激发可能与分子外流同源.  相似文献   

15.
12CO J=2-1 maps of L379 IRS1 show a molecular outflow seen almost end-on while C18O J=2-1 emission covers a smaller central region, tracing virially bound material deeper within the cloud. Continuum maps at 450, 800 and 1100µm all trace an identical double peaked arc west of IRS1 and VLA NH3 (1,1) & (2,2) integrated intensity maps reveal the same double-peaked structure. An identical velocity gradient is seen in12CO,13CO, C18O and NH3 (1,1) & (2,2) following the arc-like structure of the continuum emission.  相似文献   

16.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

17.
We have measured the proper motion of the Arches cluster near the Galactic Center (GC) with respect to the ambient field, using Keck/NIRC2 LGS-AO and VLT/NAOS-CONICA NGS-AO observations spanning a baseline of 4.3 yr. Combined with the radial velocity, we derive a 3D space motion of 232±30 km?s?1 for the Arches cluster. This motion is exceptionally large compared to molecular cloud orbits at the GC, and places stringent constraints on the formation scenarios for starburst clusters in dense, nuclear environments.  相似文献   

18.
CO maps of the Bok globule B335 are presented and used to derive its density profile, mass distribution, and rotational velocity structure. It is found that the cloud is in nearly hydrostatic equilibrium with a density profile that varies roughly as r?1 in the core and r?3 in the envelope. The observed rotation is unimportant in the force balance at the present stage of evolution.  相似文献   

19.
We present the monitoring results for the H2O maser toward the infrared source IRAS 06308+0402 associated with a dense cold molecular cloud. The observations were carried out with the 22-m radio telescope at the Pushchino Radio Astronomy Observatory (Russia) during 1992–2003. The H2O maser was discovered in May 1992 (Pashchenko 1992) during a survey of IRAS sources associated with dense cold clouds with bipolar molecular outflows. The H2O spectrum contains many emission features, suggesting the fragmentation of the envelope around a young star. The star has a low peculiar velocity relative to the CO molecular cloud (~2.2 km s?1). We found a cyclic variability of the total maser flux with a period from 1.8 to 3.1 yr.  相似文献   

20.
We consider how the tidal potential of a stellar cluster or a dense molecular cloud affects the fragmentation of gravitationally unstable molecular cloud cores. We find that molecular cloud cores which would collapse to form a single star in the absence of tidal shear, can be forced to fragment if they are subjected to tides. This may enhance the frequency of binaries in star-forming regions such as Ophiuchus and the frequency of binaries with separations ≲100 au in the Orion Trapezium Cluster. We also find that clouds which collapse to form binary systems in the absence of a tidal potential will form bound binary systems if exposed to weak tidal shear. However, if the tidal shear is sufficiently strong, even though the cloud still collapses to form two fragments, the fragments are pulled apart while they are forming by the tidal shear and two single stars are formed. This sets an upper limit for the separation of binaries that form near dense molecular clouds or in stellar clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号