首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The temperature-sensitive Fe,Mg exchange equilibrium,
  相似文献   

2.
Earthquake recurrence intervals for large and great shallow mainshocks in 12 seismogenic sources along the North Pacific seismic zone (Alaska-Aleutians-Kamchatka-Kuril Islands) have been estimated and used for the determination of the following relations:
  相似文献   

3.
The transition from feldspar amphibolite to eclogite is a very wide P-T field that extends from some-where close to 5 kbar where the garnet-amphibole pair starts to appear, to 10–20 kbar at albite-out reaction, then up to 25–30 kbar where an hydrated phase such as amphibole can be stable with pyroxene and garnet. Thus the assemblage garnet (py)+ amphibole (tr)+epidote (cz)±plagioclase (ab)±clinopyroxene (di)±quartz (qz)±fluid is commonly reported in a large number of metamorphic terrains. These mineral phases are complex solid-solutions which adapt to variations in environmental conditions mainly by means of continuous reactions. The reaction space, introduced by. Thompson in 1982a, provides a very elegant and powerful tool to approach these high-variance assemblages. The reactions:
  相似文献   

4.
A new determination of the equilibrium reaction: $$\begin{gathered} 2{\text{ Mg}}_{\text{2}} [{\text{SiO}}_{\text{4}} ] + 3{\text{ H}}_{\text{2}} {\text{O}} \rightleftharpoons {\text{1 Mg}}_{\text{3}} [({\text{OH)}}_{\text{4}} |{\text{Si}}_{\text{2}} {\text{O}}_{\text{5}} ] + 1{\text{ Mg(OH)}}_{\text{2}} \hfill \\ \hfill \\ {\text{ forsterite serpentine brucite}} \hfill \\ \end{gathered} $$ yielded equilibrium temperatures which lie (at identical H2O-pressures) about 60° C lower than all previously published data (Bowen and Tuttle, 1949; Yoder, 1952; Kitahara et al., 1966; Kitahara and Kennedy, 1967). It has been shown that the above authors have determined not the stable equilibrium curve but instead a metastable “synthesis boundary”. The actual (stable) equilibrium curve is located at 0,5 kb and 350° C 2,0 kb and 380° C 3,5 kb and 400° C 5,0 kb and 420° C 6,5 kb and 430° C.  相似文献   

5.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

6.
Reactions involving the phases quartz-rhodochrosite-tephroite-pyroxmangite-fluid have been studied experimentally in the system MnO-SiO2-CO2-H2O at a pressure of 2 000 bars and resulted in the following expressions 1 $$\begin{gathered} {\text{Rhodochrosite + Quartz = Pyroxmangite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{11.765}}{T} + 18.618. \hfill \\ {\text{Rhodochrosite + Pyroxmangite = Tephroite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{7.083}}{T} + 11.870. \hfill \\ \end{gathered}$$ which can be used to derive data for the remaining two reactions among the phases under consideration. Field data from the Alps are in agreement with the metamorphic sequence resulting from the experiments.  相似文献   

7.
Experiments at high pressure and temperature indicate that excess Ca may be dissolved in diopside. If the (Ca, Mg)2Si2O6 clinopyroxene solution extends to more Ca-rich compositions than CaMgSi2O6, macroscopic regular solution models cannot strictly be applied to this system. A nonconvergent site-disorder model, such as that proposed by Thompson (1969, 1970), may be more appropriate. We have modified Thompson's model to include asymmetric excess parameters and have used a linear least-squares technique to fit the available experimental data for Ca-Mg orthopyroxene-clinopyroxene equilibria and Fe-free pigeonite stability to this model. The model expressions for equilibrium conditions \(\mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction A) and \(\mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction B) are given by: 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Mg}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ W_{21} [2(X_{{\text{Ca}}}^{{\text{M2}}} )^3 - (X_{{\text{Ca}}}^{{\text{M2}}} ] \hfill \\ {\text{ + 2W}}_{{\text{22}}} [X_{{\text{Ca}}}^{{\text{M2}}} )^2 - (X_{{\text{Ca}}}^{{\text{M2}}} )^3 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{Wo}}}^{{\text{opx}}} )^2 \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Ca}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ 2W_{21} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^2 - (X_{{\text{Mg}}}^{{\text{M2}}} )^3 ] \hfill \\ {\text{ + W}}_{{\text{22}}} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^3 - (X_{{\text{Mg}}}^{{\text{M2}}} )^2 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{En}}}^{{\text{opx}}} )^2 \hfill \\ \hfill \\ \end{gathered} $$ where 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = 2.953 + 0.0602{\text{P}} - 0.00179{\text{T}} \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = 24.64 + 0.958{\text{P}} - (0.0286){\text{T}} \hfill \\ {\text{W}}_{{\text{21}}} = 47.12 + 0.273{\text{P}} \hfill \\ {\text{W}}_{{\text{22}}} = 66.11 + ( - 0.249){\text{P}} \hfill \\ {\text{W}}^{{\text{opx}}} = 40 \hfill \\ \Delta {\text{G}}_*^0 = 155{\text{ (all values are in kJ/gfw)}}{\text{.}} \hfill \\ \end{gathered} $$ . Site occupancies in clinopyroxene were determined from the internal equilibrium condition 1 $$\begin{gathered} \Delta G_{\text{E}}^{\text{O}} = - {\text{RT 1n}}\left[ {\frac{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}{{X_{{\text{Ca}}}^{{\text{M2}}} \cdot X_{{\text{Mg}}}^{{\text{M1}}} }}} \right] + \tfrac{1}{2}[(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} )(2{\text{X}}_{{\text{Ca}}}^{{\text{M2}}} - 1) \hfill \\ {\text{ + }}\Delta G_*^0 (X_{{\text{Ca}}}^{{\text{M1}}} - X_{{\text{Ca}}}^{{\text{M2}}} ) + \tfrac{3}{2}(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} ) \hfill \\ {\text{ (1}} - 2X_{{\text{Ca}}}^{{\text{M1}}} )(X_{{\text{Ca}}}^{{\text{M1}}} + \tfrac{1}{2})] \hfill \\ \end{gathered} $$ where δG E 0 =153+0.023T+1.2P. The predicted concentrations of Ca on the clinopyroxene Ml site are low enough to be compatible with crystallographic studies. Temperatures calculated from the model for coexisting ortho- and clinopyroxene pairs fit the experimental data to within 10° in most cases; the worst discrepancy is 30°. Phase relations for clinopyroxene, orthopyroxene and pigeonite are successfully described by this model at temperatures up to 1,600° C and pressures from 0.001 to 40 kbar. Predicted enthalpies of solution agree well with the calorimetric measurements of Newton et al. (1979). The nonconvergent site disorder model affords good approximations to both the free energy and enthalpy of clinopyroxenes, and, therefore, the configurational entropy as well. This approach may provide an example for Febearing pyroxenes in which cation site exchange has an even more profound effect on the thermodynamic properties.  相似文献   

8.
Three independent Pb isotope homogenizing processes operating on large volumes of rock material during limited intervals in the Phanerozoic have been used to define a unique evolutionary curve for rock and ore lead isotopic compositions of the southern Massif Central, France. The model is
  相似文献   

9.
The enthalpies of transition at T= 298 K between zinc metasilicate assemblages, measured by molten oxide solution calorimetry, are:
  相似文献   

10.
Five geobarometers involving cordierite have been formulated for quantitative pressure sensing in high grade metapelites. The relevant reactions in the FeO-Al2O3-SiO2 (±H2O) system are based on the assemblages (A) cordierite-garnet-sillimanite-quartz, (B) cordierite-spinel-quartz, (C) cordierite-garnet-spinel-sillimanite, (D) cordierite-garnet-orthopyroxene-quartz and (E) cordierite-orthopyroxene-sillimanite-quartz. Application of the barometric formulations to a large number of granulite grade rocks indicates that the cordierite-garnet-sillimanite-quartz equilibrium is widely applicable and registers pressures which are in good agreement with the “consensus” pressure estimates. The dispersion in the computed P values, expressed as one standard deviation, is within ±1.2 kbar. The geobarometers (B) and (C) also yield pressures which are reasonable and compare well with those computed from equilibrium (A). The estimated pressures from (D) and (E), both involving orthopyroxene, are at variance with these estimates. It has been argued that the discrepancy in pressures obtained from these geobarometers stems from an inadequate knowledge of activity-composition relations and/or errors in input thermodynamic data of aluminous orthopyroxene. The convergence of pressure values estimated from the barometric formulations, especially (A), (B) and (C), implies that the present formulations are more dependable than the existing formulations and are also capable of setting limits on P values in response to varying $$\begin{gathered} {\text{1/2Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} \hfill \\ {\text{ = 1/3Fe}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} {\text{ + 2/3Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + 5/6SiO}}_{\text{2}} {\text{. (A)}} \hfill \\ {\text{1/2Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} {\text{ = FeAl}}_{\text{2}} {\text{O}}_{\text{4}} {\text{ + 5/2SiO}}_{\text{2}} {\text{. (B)}} \hfill \\ {\text{Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} {\text{ + FeAl}}_{\text{2}} {\text{O}}_{\text{4}} \hfill \\ = {\text{Fe}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} {\text{ + 2Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{. (C)}} \hfill \\ {\text{1/2Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} {\text{ + Fe}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} \hfill \\ = {\text{Fe}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} {\text{ + 3/2SiO}}_{\text{2}} .{\text{ (D)}} \hfill \\ {\text{1/2Fe}}_{\text{2}} {\text{Al}}{}_{\text{4}}{\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} \hfill \\ = 1/2{\text{Fe}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} {\text{ + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + 1/2SiO}}_{\text{2}} .{\text{ (E)}} \hfill \\ \end{gathered}$$ . The present communication addresses the calibration, applicability and reliability of these barometers with reference to granulite facies metapelites.  相似文献   

11.
Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: $$\begin{gathered} {\text{Anorthite}} {\text{Orthopyroxene}} {\text{Quartz}} \hfill \\ {\text{2CaAl}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{8}} + (6 - \alpha )({\text{Fe,Mg}}){\text{SiO}}_{\text{3}} + \alpha {\text{Fe - Oxide + (}}\alpha {\text{ - 2)SiO}}_{\text{2}} \hfill \\ {\text{Garnet}} {\text{Clinopyroxene}} \hfill \\ = {\text{Ca(Fe,Mg)}}_{\text{5}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{6}} {\text{O}}_{{\text{24}}} + {\text{Ca(Fe,Mg)Si}}_{\text{2}} {\text{O}}_{\text{6}} \hfill \\ \end{gathered} $$ , where α is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ± orthopyroxene ± quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies.  相似文献   

12.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

13.
Hydrothermal reversal experiments have been performed on the upper pressure stability of paragonite in the temperature range 550–740 ° C. The reaction $$\begin{gathered} {\text{NaAl}}_{\text{3}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{1 0}}} ({\text{OH)}}_{\text{2}} \hfill \\ {\text{ paragonite}} \hfill \\ {\text{ = NaAlSi}}_{\text{2}} {\text{O}}_{\text{6}} + {\text{Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}} \hfill \\ {\text{ jadeite kyanite vapour}} \hfill \\ \end{gathered}$$ has been bracketed at 550 ° C, 600 ° C, 650 ° C, and 700 ° C, at pressures 24–26 kb, 24–25.5 kb, 24–25 kb, and 23–24.5 kb respectively. The reaction has a shallow negative slope (? 10 bar °C?1) and is of geobarometric significance to the stability of the eclogite assemblage, omphacite+kyanite. The experimental brackets are thermodynamically consistent with the lower pressure reversals of Chatterjee (1970, 1972), and a set of thermodynamic data is presented which satisfies all the reversal brackets for six reactions in the system Na2O-Al2O3-SiO2-H2O. The Modified Redlich Kwong equation for H2O (Holloway, 1977) predicts fugacities which are too high to satisfy the reversals of this study. The P-T stabilities of important eclogite and blueschist assemblages involving omphacite, kyanite, lawsonite, Jadeite, albite, chloritoid, and almandine with paragonite have been calculated using thermodynamic data derived from this study.  相似文献   

14.
A great wealth of analytical data for fluid inclusions in minerals indicate that the major species of gases in fluid inclusions are H2O, CO2, CO, CH4, H2 and O2. Three basic chemical reactions are supposed to prevail in rock-forming and ore-forming fluids: $$\begin{gathered} H_2 + 1/2{\text{ O}}_{\text{2}} = H_2 O, \hfill \\ CO + 1/2{\text{ O}}_{\text{2}} = CO_2 , \hfill \\ CH_4 + 2{\text{O}}_{\text{2}} = CO_2 + 2H_2 O, \hfill \\ \end{gathered} $$ and equilibria are reached among them. \(\lg f_{O_2 } - T,{\text{ }}\lg f_{CO_2 } - T\) and Eh-T charts for petrogenesis and minerogenesis in the supercritical state have been plotted under different pressures. On the basis of these charts \(f_{O^2 } ,{\text{ }}f_{CO_2 } \) , Eh, equilibrium temperature and equilibrium pressure can be readily calculated. In this paper some examples are presented to show their successful application in the study of the ore-forming environments of ore deposits.  相似文献   

15.
The temperature dependence of the Mn-Mg distribution between garnet and clinopyroxene, originally proposed by Carswell, was confirmed by Shimizu and Allègre (1978) using ion microprobe and electron microprobe data. High precision electron microprobe analyses of a larger set of 52 Iherzolites from S. Africa and Malaita, Solomon Islands show considerable scatter in the temperature dependence of this distribution, and correlation with the CaO content of the garnet is indicated. A new distribution coefficient is based on the reaction: $$\begin{gathered} \operatorname{Mn} _{\text{2}} \operatorname{Si} _2 \operatorname{O} _6 {\text{ + }}\operatorname{CaAl} _{2/3} \operatorname{SiO} _4 {\text{ + }}\operatorname{MgAl} _{2/3} \operatorname{SiO} _4 \hfill \\ {\text{Mn - pyroxene grossular pyrope}} \hfill \\ {\text{ }} \rightleftharpoons \operatorname{CaMgSi} _2 \operatorname{O} _6 {\text{ + }}2\operatorname{MnAl} _{2/3} \operatorname{SiO} _4 \hfill \\ {\text{ diopside spessartine}} \hfill \\ \end{gathered} $$ It was calibrated against temperature determined from two independent thermometers (Wells pyroxene and O'Neill-Wood garnet-olivine) for Iherzolitic assemblages, and shown to to be sensitive to within + 50 °C for most specimens in the range 900 °– 1,300 ° C. This distribution coefficient appears independent of pressure within the uncertainty of the available data, and has the potential to be a third independent thermometer for use in garnet Iherzolites and possibly eclogites.  相似文献   

16.
The effective binary diffusion coefficient (EBDC) of silicon has been measured during the interdiffusion of peralkaline, fluorine-bearing (1.3 wt% F), hydrous (3.3 and 6 wt% H2O), dacitic and rhyolitic melts at 1.0 GPa and temperatures between 1100°C and 1400°C. From Boltzmann-Matano analysis of diffusion profiles the diffusivity of silicon at 68 wt% SiO2 can be described by the following Arrhenius equations (with standard errors): $$\begin{gathered} {\text{with 1}}{\text{.3 wt\% F and 3}}{\text{.3\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.66}} \times {\text{10}}^{ - {\text{9}}} } \\ { - {\text{1}}{\text{.86}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ {\text{with 1}}{\text{.3 wt\% F and 6}}{\text{.0\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.51}} \times {\text{10}}^{ - {\text{8}}} } \\ { - {\text{1}}{\text{.77}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ \end{gathered} $$ where D is in m2s?1 and activation energies are in kJ/mol. Diffusivities measured at 64 and 72 wt% SiO2 are only slightly different from those at 68 wt% SiO2 and frequently all measurements are within error of each other. Silicon, aluminum, iron, magnesium, and calcium EBDCs were also calculated from diffusion profiles by error function inversion techniques assuming constant diffusivity. With one exception, silicon EBDCs calculated by error function techniques are within error of Boltzmann-Matano EBDCs. Average diffusivities of Fe, Mg, and Ca were within a factor of 2.5 of silicon diffusivities whereas Al diffusivities were approximately half those of silicon. Alkalies diffused much more rapidly than silicon and non-alkalies, however their diffusivities were not quantitatively determined. Low activation energies for silicon EBDCs result in rapid diffusion at magmatic temperatures. Assuming that water and fluorine exert similar effects on melt viscosity at high temperatures, the viscosity can be calculated and used in the Eyring equation used to determine diffusivities, typically to within a factor of three of those measured in this study. This correlation between viscosity and diffusivity can be inverted to calculate viscosities of fluorine- and water-bearing granitic melts at magmatic temperatures; these viscosities are orders of magnitude below those of hydrous granitic melts and result in more rapid and effective separation of granitic magmas from partially molten source rocks. Comparison of Arrhenius parameters for diffusion measured in this study with Arrhenius parameters determined for diffusion in similar compositions at the same pressure demonstrates simple relationships between Arrhenius parameters, activation energy-Ea, kJ/mol, pre-exponential factor-Do, m2s?1, and the volatile, X=F or OH?, to oxygen, O, ratio of the melt {(X/X+O)}: $$\begin{gathered} {\text{E}}a = - {\text{1533\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }} + {\text{213}}{\text{.3}} \hfill \\ {\text{D}}_{\text{O}} = {\text{2}}{\text{.13}} \times {\text{10}}^{ - {\text{6}}} {\text{exp}}\left[ { - {\text{6}}{\text{.5\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }}} \right] \hfill \\ \end{gathered} $$ These relationships can be used to estimate diffusion in various melts of dacitic to rhyolitic composition containing both fluorine and water. Calculations for the contamination of rhyolitic melts by dacitic enclaves at 800°C and 700°C provide evidence for the virtual inevitability of diffusive contamination in hydrous and fluorine-bearing magmas if they undergo magma mixing of any form.  相似文献   

17.
Partitioning of Mg and Fe between coexisting biotite and orthopyroxene has been experimentally determined at temperatures 700, 750 and 800° C and 490 MPa total pressure in the system KAlO2-MgO-FeO-SiO2-H2O. Oxygen fugacity was controlled by the QFM buffer. Starting materials were synthetic minerals of differing Fe/(Fe+Mg) values. Run products were analyzed for partitioning of components by a microprobe. Orthopyroxene was established to be notably inhomogeneous, whereas biotite was essentially homogeneous. To establish equilibrium relations, statistical treatment of the results of each experiment in addition to the whole complex of experimental data was applied. The regression equations for isotherms of the Fe-Mg partitioning between the minerals studied have been obtained. As a result, the equation for a two-dimensional regression may be written as: $$\begin{gathered} Y = (A + A_1 t + A_2 t^2 )(X - X^4 ) + (B + B_1 t + B_1 t^2 )(X^2 - X^4 ) + \hfill \\ (C + C_1 t + C_1 t^2 )(X^3 - X^4 ) + X^4 {\text{ where }}Y = X_{{\text{Opx}}}^{{\text{Fe}}} ;{\text{ X}} = {\text{X}}_{{\text{Bi}}}^{{\text{Fe}}} ; \hfill \\ t = 1000/T,K, \hfill \\ \begin{array}{*{20}c} {A = {\text{ }}4.59398,} & {A_1 = - {\text{ }}8.29838,} & {A_2 = {\text{ }}4.97316,} \\ {B = - 11.13731,} & {B_1 = {\text{ }}28.19304,} & {B_2 = - 20.98240,} \\ {A = {\text{ }}8.25072,} & {C_1 = - 20.80485,} & {C_2 = {\text{ }}15.35967} \\ \end{array} \hfill \\ {\text{ }}\sigma = 0.0143{\text{ }} \hfill \\ \end{gathered}$$ . This equation enables extrapolation of partitioning isotherms over a wide range of temperatures.  相似文献   

18.
Three Al-Cr exchange isotherms at 1,250°, 1,050°, and 796° between Mg(Al, Cr)2O4 spinel and (Al, Cr)2O3 corundum crystalline solutions have been studied experimentally at 25 kbar pressure. Starting from gels of suitable bulk compositions, close approach to equilibrium has been demonstrated in each case by time studies. Using the equation of state for (Al, Cr)2O3 crystalline solution (Chatterjee et al. 1982a) and assuming that the Mg(Al, Cr)2O4 can be treated in terms of the asymmetric Margules relation, the exchange isotherms were solved for Δ G *, and . The best constrained data set from the 1,250° C isotherm clearly shows that the latter two quantities do not overlap within three standard deviations, justifying the choice of asymmetric Margules relation for describing the excess mixing properties of Mg(Al, Cr)2O4 spinels. Based on these experiments, the following polybaric-polythermal equation of state can be formulated: , P expressed in bars, T in K, G m ex and W G,i Sp in joules/mol. Temperature-dependence of G m ex is best constrained in the range 796–1,250° C; extrapolation beyond that range would have to be done with caution. Such extrapolation to lower temperature shows tentatively that at 1 bar pressure the critical temperature, T c, of the spinel solvus is 427° C, with dTc/dP≈1.3 K/kbar. The critical composition, X c, is 0.42 , and changes barely with pressure. Substantial error in calculated phase diagrams will result if the significant positive deviation from ideality is ignored for Al-Cr mixing in such spinels.  相似文献   

19.
The addition of Fe and Cr to the simple system MgO-SiO2-Al2O3 markedly affects the activities of phases involved in the equilibrium
\textMg\text2 \textSiO\text4 \text + MgAl\text2 \textSiO\text6 \text = MgAl\text2 \textO\text4 \text + Mg\text2 \textSi\text2 \textO\text6 \textOlivine + Opx\textsolid solution \text = Spinel + Opx\textsolid solution \begin{gathered} {\text{Mg}}_{\text{2}} {\text{SiO}}_{\text{4}} {\text{ + MgAl}}_{\text{2}} {\text{SiO}}_{\text{6}} {\text{ = MgAl}}_{\text{2}} {\text{O}}_{\text{4}} {\text{ + Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} \hfill \\ {\text{Olivine + Opx}}_{{\text{solid solution}}} {\text{ = Spinel + Opx}}_{{\text{solid solution}}} \hfill \\ \end{gathered}  相似文献   

20.
Oxygen Fugacity measurements were carried out on chromites from the Eastern Bushveld Complex (Maandagshoek) and are compared with former measurements on chromites from the western Bushveld Complex (Zwartkop Chrome Mine). These results together with those of Hill and Roeder (1974) yield the following conditions of formation for the massive chromitite layers: Western Bushveld Complex (Zwartkop Chrome Mine) $$\begin{gathered} Layer{\text{ }}T(^\circ C) p_{O_2 } (atm) \hfill \\ LG3{\text{ 1160}} - {\text{1234 10}}^{ - {\text{5}}} - 10^{ - 7.6} \hfill \\ LG4{\text{ 1175}} - {\text{1200 10}}^{ - 6.35} - 10^{ - 7.20} \hfill \\ LG6{\text{ 1162}} - {\text{1207 10}}^{ - 6.20} - 10^{ - 7.50} \hfill \\ \hfill \\ \end{gathered} $$ Eastern Bushveld Complex (Farm Maandagshoek) $$\begin{gathered} {\text{LXI 1115}} - {\text{1150 10}}^{ - 7.80} - 10^{ - 8.80} \hfill \\ ( = {\text{Steelpoort Seam)}} \hfill \\ {\text{LX 1125 10}}^{ - 8.25} \hfill \\ {\text{V 1120 10}}^{ - 8.55} \hfill \\ {\text{LII 1120 10}}^{ - 8.0} - 10^{ - 8.60} \hfill \\ \end{gathered} $$ The comparison of the data shows, that the chronitite layers within each particular sequence were formed under approximately identicalp o 2- andT-conditions. The chromites from the western Bushveld Complex, however, were formed at higher temperatures and higher oxygen fugacities than the chromites from the eastern Bushveld Complex. Fromp o 2-T-curves of disseminated chromites and the temperatures derived above, the following conditions of formation for the host rocks were obtained: Western Bushveld Complex $$T = 1200^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 7.25} - 10^{ - 7.50} $$ Eastern Bushveld Complex $$T = 1125^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 8.50} - 10^{ - 9.25} $$ Consequently, the host rocks in the Zwartkop-Chrome-Mine, were formed under higher temperatures and higher oxygen fugacities than the host rocks at Maandagshoek. The rock sequence in the Zwartkop-Chrome-Mine therefore originated in an earlier stage of the differentiation of the Bushveld magma. Comparison of the chromites from the host rocks with the chromites from massive layers supports Ulmer's (1969) thesis that an increase of the oxygen fugacity is responsible for the formation of massive chromitite layers. The values in this investigation show that increases of only about 0.5–1.0 log units are necessary to enhance chromitite layer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号